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Summary

AESOP is a computer program for use in designing
feedback controls and state estimators for linear multi-
variable systems. AESOP is meant to be used in an
interactive manner. Each design task that the program
performs is assigned a ‘‘function’® number. The user
accesses these functions either (1) by inputting a list of
desired function numbers or (2) by inputting a single
function number. In the latter case the choice of the
function will in general depend on the results obtained by
the previously executed function.

The most important of the AESOP functions are those
that design linear quadratic regulators and Kalman
filters. The user interacts with the program when using
these design functions by inputting design weighting
parameters and by viewing graphic displays of designed
system responses. Supporting functions are provided that
obtain system transient and frequency responses, transfer
functions, and covariance matrices. The program can
also compute open-loop system information such as
stability (eigenvalues), eigenvectors, controllability, and
observability.

The program is written in ANSI-66 Fortran for use on
an IBM 3033 using TSS 370. Descriptions of all sub-
routines and results of two test cases are included in the
appendixes.

Introduction

The computer program called AESOP (Algorithms for
EStimator and OPtimal regulator design) was written to
solve a number of problems associated with the design of
controls and state estimators for linear time-invariant
systems. The systems considered are modeled in state-
variable form by a set of linear differential and algebraic
equations with constant coefficients. Two key problems
solved by AESOP are the linear quadratic regulator
(LQR) design problem and the steady-state Kalman filter
design problem. The remainder of AESOP is devoted to
calculations in support of these two problems, mainly for
analyzing the open-loop system and evaluating the
resulting control or estimator designs. Thus the overall
program can be subdivided as follows:

(1) Open-loop system analyses

(2) Control and filter design

(3) System response calculations

The AESOP program was developed at Lewis for use
in conducting design studies in propulsion system control
(refs. 1 and 2). AESOP was an outgrowth of a previously
developed control design program called LSOCE (ref. 3),
which had been used in supersonic inlet controls develop-
ment (refs. 4 and 5). AESOP differs from LSOCE mainly
in that it was designed to be operated in an interactive

manner, whereas LSOCE was strictly a batch type of
program. In addition, AESOP contains system response
and evaluation features that are not present in LSOCE.
These additions tend to enhance AESOP’s use as an
interactive design tool.

Other control design computer programs appearing in
the literature perform computations similar to those of
AESOP. Notable among the original LQR design
programs are ASP by Kalman and Englar (ref. 6) and its
Fortran version VASP (ref. 7). Subsequent LQR design
packages were the OPTSYS program of Bryson and Hall
(ref. 8), the ORACLS program of Armstrong (ref. 9),
and Honeywell’s DIGIKON (ref. 10). Computer-aided
control system design program development has
accelerated in recent years. A good summary of this
development is contained in reference 11. Here, over 20
control design programs and packages, including
AESOP, are discussed in varying degrees of detail. They
represent a variety of design methodologies, ranging
from classical single-loop approaches to multivariable
LQR and multivariable frequency domain approaches,
for both continuous and discrete formulations. Most are
written in Fortran and have some sort of interactive
capability, but except for a few commercially available
packages, most are neither completely documented nor
generally available. AESOP, at the present time, is the
only interactive LQR type of control design program that
is in the public domain. (Contact COSMIC, The
University of Georgia, Athens, Ga. 30602, concerning
the availability of this program.)

The AESOP program is structured around a list of
predefined and numbered functions. Each function
performs, basically, a single computation associated with
control, estimation, or system response determination.
For example, one AESOP function computes the
eigenvalues of the open-loop system matrix A, another
function reads in the A matrix, etc. These functions are
described fully in the section Description of AESOP
Functions. The use of these functions and the part they
play in AESOP can be described in general terms with the
aid of figure 1. The figure illustrates what the user of the
program does (left side of fig. 1), what the program does
(right side of fig. 1), and the interaction between the user
and the program.

The user begins by defining the problem to be solved
(e.g., by defining the matrices that define the state-
variable model of the open-loop system). The user then
provides this information to AESOP as input data,
generally storing it in a data file. Next the program
“prompts’’ the user to enter a list of function numbers
that are to be performed, in sequence, by AESOP to
solve the user’s problem. Usually this list of numbers is
entered at a terminal, but it can also be entered from a
prestored data file. The AESOP program then executes
the desired functions in proper sequence, storing away all
results on an output file (fig. 1) as “‘off-line output” but



User

Define Input
problem ST T T T T T T T T T T T T T T T T ™ dafa
Enter list of

1 AESOP

function numbers \\\\ program
S——
\\\
~— Function 1
S~ functonz
Enter new
‘ function numbers e
Function N

Evaluate

results

\\\\
~ |
\\
S~
\\
~«J] On-line Off-line
display output

Program

Figure 1. — Overview of AESOP program operation.

also displaying selected portions of the results back at the
user’s terminal (fig. 1) as ‘“‘on-line display.”” The user
then decides whether to terminate the program or to
request that more functions be performed. The program
again prompts the user to enter numbers that define the
new functions, which can be entered singly or as a
number string. Typically, one of the functions a user
would enter, at this time, would be one that allows the
user to vary some problem parameter. In this way the
user can effectively interact with the program in an on-
line manner to achieve the desired design results. At the
conclusion of the terminal session the user commands the
output data file to be printed and hard copies to be made
of any graphic output generated that was not previously
displayed on-line.

This concludes the overview of the basic operation of
the AESOP program. The next section describes the
various design problems that can be solved by using
AESOP, indicating what function numbers the user
would request in order to perform the computations.
Following that section is the section AESOP Program
Operation. Here, examples are presented of a typical
dialog between the user and the program. Following that
is the section Description of AESOP Functions, which
describes each of the 78 functions, what input each
requires, and what calculations each performs. These
latter two sections serve as a guide to which the user can

2

refer as necessary while running the program.
Appendixes include information such as a symbol table,
brief subroutine descriptions, and two test cases that are
useful both for program checkout and for gaining an
understanding of how the program operates.

Theoretical Background and
Problem Formulation

The computations performed by the AESOP program
can be grouped into five basic categories. These cate-
gories are illustrated in figure 2. This section presents the
equations that define the various problems to be solved
and indicates the solution methods used by AESOP.
After reading this and the next section, the reader should
be able to use AESOP to solve a number of ‘‘standard”’
problems by using ‘‘standard’’ sequences of function
numbers. The reader will then be able to devise other
function number sequences that would allow other more
specialized problems to be solved.

Open-Loop System Description

Before beginning any control or filter design on a
linear dynamic system, it is important to thoroughly
analyze the open-loop system under consideration. The
linear open-loop system defined for use throughout this
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Figure 2. —Control system design computations performed by AESOP program.

report is given in the following state-variable form and
shown schematically in figure 3. The state equation is

x=Ax+Bu+Dw 1
where

X Nth-order state vector
u NCth-order control vector
w NDth-order white-noise disturbance vector

and A, B, and D are matrices of appropriate dimensions.
Fortran symbols for matrices used in the AESOP
program coding are used herein whenever possible. A
measurement equation, defining the system’s measurable
output vector is

Z=2+V (2a)

z1=Hx (2b)

Disturbance, w
[ o o

where
z NMth-order measurement vector
v NMth-order white-noise measurement vector

H NM-by-N matrix

In addition to the measurement vector an output vector,
which represents unmeasurable outputs, is defined as

y=C x+DOUT u 3)
where y is an NOth-order output vector. Finally, a set of
noise-free measurements called a set-point vector are
defined. These represent outputs (NC in number) that are

to be regulated to desired constant ser-point values. This
vector is given as

¥sp =CSP x @)

where yg, is an NCth-order set-point vector.

Set-point output. y p

csp Noise, v
State, x h zy o+ é‘* Measurement, z

Control, u + X
Sat

Output, y

+
c +?

v

Figure 3. — Block diagram of open-loop system.



Eigenvalues and Eigenvectors

Of prime importance in designing a control system is
knowledge of the open-loop system structure and
stability. This knowledge affects the designer’s choice of
performance index weighting matrices, sensed variables
to use for control or estimation, etc.

Open-loop stability is determined by the eigenvalues of
the system A matrix. The system is stable if and only if
these eigenvalues N; (i=1, 2, . . ., N) all have negative
real parts. Consider the unforced version of equation (1),

X=A x )

Define a new state vector X, relating to x through the
transformation matrix T as

Tx=x (6)

Substitute for x in equation (5) to obtain

x=T-1ATx @)

If we let T-1 AT be equal to a diagonal matrix A,
equation (7) can be rewritten as

§=A§ 8)

The diagonal elements of A are the eigenvalues of A, T is
the eigenvector matrix (a matrix whose columns are the
eigenvectors of A), and x is defined as the modal state
vector. The value of A is computed by using AESOP
function 501, and the eigenvectors are obtained by using
function 402. To avoid complex arithmetic, a block
diagonal form is used for the matrix A such that a
complex eigenvalue pair (A, Ay 1) =(a+/jB, a—jB)
appears in the 2-by-2 diagonal block of A,

where the o’s are along the diagonal. Let the complex
eigenvector pair (1, n;41=7v+/d, v—j6) correspond to
the complex eigenvalue pair a +j3. Then in the columns
corresponding to the defined diagonal block of A there
appear two real vectors t; and t; . ; defined as

ti=v+6

tip1=v-0

Hence, when A is block diagonal, T is called a modified
eigenvector matrix. AESOP function 402 also calculates
the so-called mode shapes. For a real eigenvector the
mode-shape vector is the same as the eigenvector.
However, for a complex eigenvector pair the corre-
sponding mode-shape vector pair contains, in successive
columns, the magnitude of »; and the phase of 5;. Each
mode-shape vector is normalized by dividing all of the
elements by the magnitude of the largest element. The
phase of the largest element is set to zero, and the phases
of all other components of the vector are adjusted
accordingly.

Controllability, Observability, and Mode Shapes

Once the eigenvalues and eigenvectors (mode-shape
vectors) are calculated, it is an easy task to determine
controllability and observability. For this purpose,
system equations (1) and (2a) can be rewritten in terms of
the modal state vector as

x=Ax+T-1Bu 9
z=HTx+v (10)

System controllability is determined by examining the
elements of T-1B. The system is uncontrollable if
elements in a row of T—1 B are zero, meaning that it is
impossible to excite a component of the modal state
vector x with the control vector u. Also, using this modal
formulation, one can think of the matrix T—1 B as being
the control effectiveness matrix. That is, the relative
magnitudes of the row elements of T—1 B define the
relative influence each control input has on a modal state
variable (mode). For a meaningful comparison, however,
the control inputs must be normalized (nondimen-
sionalized). Normalization can be done by using AESOP
function number 404. Normalization (and unnormaliza-
tion) is discussed in detail later in this section. The
control effectiveness matrix is calculated by AESOP
function 403.

System observability can be determined similarly by
using the modal state form. From equation (10) it can be
seen that, if all elements of column £ of the H T matrix
are zero, modal state & will be unobservable through
measurement z. Also, the relative magnitudes of the
elements of row k of H T define the relative contribution
each mode makes to measurement z;. This information is
useful, for example, if one wishes to minimize the
number of measurements (sensors) required when
designing a control system that is to shift certain system
poles (modes, modal states). System observability (the
H T matrix) is computed in AESOP by using function
number 403.



In AESOP both the controliability matrix (T ~1 B) and
the observability matrix (H T) are printed out in mode-
shape format. This means that, for T-1 B, when two
successive rows k and k+1 relate to a complex modal
state pair (xg, X .. 1), the kth elements in the columns of
T—-1B are magnitudes and the (k+ 1)th elements are
phase angles. Similarly, for the HT matrix, for a
complex modal state pair, elements in the kth column of
H T are magnitudes and those in the (k + 1)th column are
phase angles.

Residues

The availability of matrices H T and T—-! B makes it
very easy to compute the system residues. Consider the
system in modal state vector form given by equations (9)
and (10). Let B=T-! B and H=H T. Thus equations
(9) and (10) can be written as

(10a)

(10b)

For a single-input-single-output linear system a transfer
function g (s) can be written in so-called residue form as

N r:
gs)=Y), —L

(10c)
18N

where each of the Nconstants r; is defined as a residue at
the transfer function pole A;. The residues define the
relative magnitude with which the system input affects
the system output through each system pole. This single
input/output concept generalizes directly to the multiple
input/output case. Here the transfer function matrix
G (s) for the system of equations (10a) and (10b) can be
written as

G(s)=H(GI-A) !B (10d)
or in residue form
N R; _ —
G(s)= Y, —L =H(sI-A)"'B (10e)
FrsN

where now the N elements R; are residue matrices. Since
A is a diagonal matrix, we can rewrite the matrix
(sE—A)~!as
N
1 E;
si-A)~'=diag( — )= Y —&
( ) g(S—)\j) jgl S—)\j

(10f)

where

~J

N
>

|10 0

Substituting from equation (10f) into equation (10e), we
obtain an equation that defines the residue matrices,
namely,

y R _y HEB
= (10g)
Frs=N S soN
Thus the jth residue matrix is simply
R=HE;B (10h)

For a real eigenvalue A; the elements of the corresponding
residue matrix R; are real, being computed simply as the
(outer) product of the jth co/umn of H and the jth row
of B.

For a complex eigenvalue pair (A;, Aj+1) AESOP
makes use of the modified eigenvector matrix form for T,
which means that H and B are also used in that form.
Thus real arithmetic can be used in computing the real
and imaginary parts of the residue matrix. AESOP prints
out that matrix in polar form (one matrix of residue
magnitudes followed by one matrix of residue phase
angles). The residues are computed along with open-loop
controllability and observability checks in function 403.

Steady-State Linear Quadratic
Regulator (LQR) Design

One of the primary functions of the AESOP program
is to compute solutions to the steady-state linear quad-
ratic regulator problem. Because this problem has been
well documented (ref. 12, e.g.), the results are only
briefly summarized herein. The system to be controlled is
described by

x=Ax+Bu (11)

where the state x is assumed to be measurable and no
plant disturbances are present.

A control that minimizes the quadratic performance
index



J= S:{xT QC x+2xT NN u+uT(PCINV) lu}dr (12)
is given by
u=-KCx (13)

For the optimal solution to exist, weighting matrices QC,
NN, and PCINYV must be as follows:

(1) PCINY is positive-definite _

(2) QC can be written as QC=M Q MT where the
pair (M,A) is observable and Q is symmetric and
positive-definite

(3) QC — NN-PCINV-NNT is nonnegative-definite.

Feedback gain matrix KC is found by solving the
following matrix Riccati equation for matrix SS:

SS(A — B-PCINV-NNT) + (A — B-PCINV-NNT)Iss
—SS(B-PCINV-BT)SS + (QC - NN-PCINV-NNT) =0

(14)

Then KC is given as

KC=PCINV(BT-SS + NNT) (15)

Figure 4 shows the structure of the LQR solution. The
gain matrix KC and the Riccati equation solution matrix
SS are computed in AESOP by function 801. The closed-
loop state equation for the regulator system shown in
figure 4 is given by
x=(A-B-KC) x (16)
AESOP uses the eigenvector decomposition method (ref.
8) to solve the Riccati equation, and as a byproduct it
prints out both the eigenvalues and eigenvectors of
A-B-KC.

The Riccati solution matrix SS theoretically is positive-
definite and symmetric. Three error checks are provided
in AESOP (functions 805, 806, and 807) to determine the
accuracy of the computed SS. The eigenvalues of SS are
computed and should be positive and real. The
differences of the off-diagonals are displayed as a
symmetry check. Finally, the computed S8 is substituted
back into equation (14) and a residual matrix is
computed.

The standard steady-state linear quadratic regulator
problem just outlined assumes that no command inputs
are present. This problem can be modified to include set-
point inputs by introducing a set of NC set-point outputs
defined by

Yp=CSP x an

These outputs are to be made equal, in steady state, to
NC corresponding desired set points ysp. This is the
so-called nonzero-set-point regulator problem of
Kwakernaak (ref. 12). The solution is to allow a
feedforward term in the control such that the control law
of equation (13) is modified to the form

u=—KC x+KFF yg,q (18)

Figure 5 shows the configuration of the nonzero-set-
point regulator. By stipulating that in steady state
¥sp =Y¥spd, matrix KFF can be computed as

KFF=[-CSP (A-B-KC)"! B] ! (19)

Thus, with NC degrees of control freedom available, NC
outputs (ysp) can be positioned in steady state by using a
feedforward matrix. The matrix KFF is simply the inverse
of the closed-loop LQR system transfer function matrix
evaluated at s=0.

-

trol
1 Control, u B
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L

+? Qutput, y
+
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-
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Figure 4. — Block diagram of linear quadratic regulator.
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Steady-State Kalman Filter Design

The second major computation performed by the
AESOP program is the design of the steady-state Kalman
filter for a linear time-invariant system described by
equations (1) and (2) and shown schematically in figure 3.
Data required to define the problem consist of plant
matrices A, B, and H and power spectral density matrices
for disturbance w and measurement noise v. These white
zero-mean Gaussian noise signals are described by their
covariance matrices, namely

E{w(t)wT (t+7')] =Q 6(7) (20)
and
E{v(t)vT (t+1')} =(RRINV)_1 (1) 21

where matrices Q and (RRINV)~! are power spectral
density matrices. For the AESOP program the
disturbance power spectral density matrix is entered as
matrix QQ, where QQ is defined as

QQ=D QDT (22)

Figure 6 is a block diagram of a linear system in
“‘standard’’ form with its associated Kalman filter. The
state equation defining the Kalman filter is

£=(A—KE'H) i+Bu+KEz 23)

The constant gain matrix KE characterizes the filter and
is obtained in AESOP by using function 809. In ob-
taining KE, AESOP solves the following Riccati
equation:

A-PP +PP-AT—PP-HT-RRINV-H-PP + QQ=0 24)

Matrix PP is the covariance of estimation error e, where
e=x—X. The Kalman gain matrix is computed by using
PP as

KE =PP-HT-RRINV (25)

As is the case with the LQR gain solution, AESOP uses
the eigenvector decomposition method to solve the
Riccati equation. Thus as a byproduct the eigenvalues
and eigenvectors of the Kalman filter (of matrix
A —KE-H) are printed out.

As mentioned in the case of the LQR the Riccati
solution matrix (PP in this case) should be positive-
definite and symmetric. Three error checks are provided
in AESOP to check on the accuracy of the estimation
error covariance matrix PP: 813, to check for positive-
definiteness; 814, to check symmetry; and 815, to
perform a residual error check.

Normalization

One useful operation that is often performed on the
matrices appearing in equations (1) to (4), which define
the open-loop system, is that of normalization.
Normalization alleviates possible numerical problems;
allows meaningful comparison between control, state, or
output variables having different units; and is generally
recommended for all control and estimator design work.
Generally one defines a normalization factor (usually a
full-scale or operating point value) for each component
of each vector. In AESOP a set of diagonal
normalization matrices are defined for the system
variables as follows:
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Figure 6. — Block diagram of open-loop system with Kalman filter.

System Vector of
variable | normalization
(vector) factor
X SCX
u SCU
z SCzZ
y SCY
Yo SCYSP

The normalization (scale) factors SCX, etc., can be
considered to be diagonal matrices but are stored in
AESOP as single-dimensioned arrays. Function 404 is
provided in AESOP to normalize all of the matrices that
define the system and the control and estimation
problems, namely: A, B, C, D, DOUT, CSP, QQ, and
RRINYV. As an example of the calculations performed,
consider the normalization of the CSP matrix. We have
that
¥sp=CSP x (26)
Explicit definition of the normalization factors for x and
¥Ysp are given by

Ysp 2 SCYSP y,, @n

xAsCcx x (28)

8

where the overbar indicates the normalized vector. Thus
the normalized CSP matrix (call it CSP) can be obtained
as

¥sp=CSP x 29
where
CSP = (SCYSP) ~ 1-CSP-SCX (30

The other matrices are normalized in a similar manner.
Note that performance index weighting matrices QC,
NN, and PCINY are not normalized in AESOP because
they are considered to be ‘‘free’’ parameters to be
manipulated by the designer. For example, ‘‘Bryson’s
rule,”’ the often-used rule of thumb for choosing starting
values of QC and (PCINV)~! states that the matrices
should be diagonal, where each diagonal term is simply 1
divided by the square of the maximum (or operating
point) value of the corresponding state or control
variable. If the system is normalized, the same result can
be obtained by simply making QC and PCINYV identity
matrices.

If normalization is used before conducting LQR or
Kalman filter designs, it may be desirable to have
normalized gain matrices KC, KE, and KFF put back in
dimensional form (unnormalized). Function 405 is pro-



vided in AESOP for this purpose. In addition, this
function unnormalizes the error covariance matrix PP.

Stochastic Linear Quadratic Regulator Design

The solution of the linear quadratic regulator problem
requires that the state vector x be completely measurable.
In general, this will not be possible. Usually, only a
vector of NM noisy measurements z, which are linearly
related to the state x, will be present for use by the
control. In line with the separation principle (ref. 12), the
optimal control for this situation is constructed by
feeding back an optimal state estimate (generated by a
Kalman filter) through the optimal regulator gains KC.
This system is optimal with respect to minimizing the
stochastic equivalent of the quadratic performance index
given by equation (12). That equivalent index is given by
J=E{xTQC x+2xTNN u + uT(PCINV) ! u} (31)

AESOP provides the means for solving this optimal
control problem by using the previously mentioned two
functions for computing gain matrices KC and KE. The
structure of the complete stochastic LQR problem is
shown in figure 7. In addition to gain computations it is
also of interest to compute various system responses to
characterize the complete closed-loop system. Of
particular interest in the case of the stochastic LQR

system are the values of the covariance matrices for the
system state, control, and output vectors. This is dis-
cussed in the following section.

System Response to Noise Inputs

The primary way to evaluate the overall performance
of a system controlled by a stochastic linear quadratic
regulator (such as is shown in fig. 7) is to examine the
mean square or rms values of the various system vari-
ables. More generally, the quantities one wishes to
compute are the covariance matrices for system vectors x,
%, u, z, and y. In particular, the mean square values are
the diagonals of the covariance matrices. The two
covariance matrices are XX, the covariance of the state
vector x, and PP, the covariance of the Kalman filter
estimation error e. As was mentioned previously, matrix
PP is computed by AESOP function 809, which conducts
the Kalman filter design. The second covariance matrix,
XX, is obtained by solving the following Lyapunov
matrix equation (ref. 12):

(A -B-KO)XX + XX(A - B-KC)T

+BKC-PP+PP-KCT-BT+QQ=0 (32)

AESOP uses an iterative method developed in refer-
ences 13 and 14 to solve this equation. In comparison

- - - /7
! )
. Set-point output, y,
Disturbance, w | o CSP[——— i
Set point, | Noise, v |~ Measurement, z
Yspd ug + * State, s A
%_’KFF ! Control, u I + oSt x " . /
+ | +
Feedforward I | + ~0utput, y
gain matrix i A c —ﬁ—}
! >DOUT
‘ _ —— _Plant |
> KCl< LQR gain matrix
S —
. )
Kalman filter 1
gain matrix KE |
|
+
I B . St I
1

Figure 7. — Stochastic LQR block diagram showing plant, Kalman filter, LQR gain matrix, and feedforward gain matrix.



with other techniques this method has been found to be
especially effective for cases where system order N is
large (50 to 100).

The Lyapunov solution is computed in AESOP
function 817. Also, this function computes three other
system covariance matrices, all simple functions of XX
and PP. They are

(1) The covariance matrix of control u,

UU=KC-(XX - PP)-KCT (33)

(2) The covariance matrix of measurement component
zZ,

ZZ=H-XX-HT 34)
(3) The covariance matrix of output y,

YY=C-PP-CT+(C—-DOUT-KC)
(XX -PP)(C-DOUT-KC)T 35)

Note that covariances XX, UU, ZZ, and YY can be
computed for cases where either (1) no control is used
(open-loop response) or (2) no Kalman filter is used (state
feedback only). The open-loop case can be computed by
simply calling function 817 without first computing either
PP or KC (these two matrices will thus be all zeros). The
state feedback case can be computed by first calling
function 801 to obtain KC and then calling function 817.

In addition to solving Lyapunov equation (32) for the
state covariance matrix, AESOP has an error check
function (number 818) that gives information on the
accuracy of the solution. Consider a general Lyapunov
equation

AX+X AT+W=0 (36)

Let the actual computed solution to equation (36) be X.
Substituting X into equation (36) for X we obtain

AX+X AT+W=R 37
where R is a residual matrix. Define an error matrix
E _é_ X — X. Subtracting equation (36) from equation
(37), we obtain another Lyapunov equation

AE+EAT-R=0 (38)
AESOP function 818 uses matrix XX obtained from the

Lyapunov solution of function 817 and (1) solves for the
residual matrix, (2) solves a Lyapunov equation to obtain
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the error matrix, and (3) computes an average error value
as Trace (E)/Trace (X).

Transfer Functions and Frequency
Response Calculations

It is often quite useful to examine the characteristics of
a state-variable system, either open or closed loop, in the
frequency domain. For instance, one may wish to analyze
the pole-zero structure of the system transfer function
matrix, given a state-variable system description. For this
purpose, one needs to be able to compute transfer
function poles, zeros, and gain given the system matrices.
As another example, one may examine the transfer
function matrix of an optimal feedback controller to see
if any simplifying pole-zero cancellations exist such that a
lower order approximation can be made. Here too it is
desirable to compute poles and zeros from a state-space
description. Frequency response plots (for example, Bode
plots) may be desirable so that one can evaluate, using
classical frequency domain criteria, the response of a
control system that was designed by using LQR methods.
Or, given a state-space, open-loop system description,
one may wish to compute a matrix of system transfer
functions or a matrix of frequency responses that can
subsequently be used by a frequency domain control
design program. For these reasons, it was decided to
include in AESOP the capability to compute transfer
functions and frequency responses for various systems
and subsystems defined in state-space terms.

Consider the generalized nth-order system described by
state equations

x=Ax+Ba (39
y=Cx+Di (40)

and having ‘‘nc’’ inputs u and ‘‘no’’ outputs y. These
equations could represent any linear system (open-loop
plant, Kalman filter, closed-loop regulator, etc.) by
appropriate choice of vectors &, §, and i and matrices A,
B, C, and D. The transfer function matrix G (s) relating
output vector § to input vector ii can be written as

§(s) =[C(sI-A) "B+ D]u(s) =G(s)ii(s) “1

AESOP allows the user to obtain solutions to equation
(41) for a variety of system configurations. It computes a
transfer function C,-j(s) relating a component u;(s) to a
component y;(s) in two forms.

The first transfer function form computed is where
each Gij(s) is a ratio of polynomials. In this case the
general expression for Gj;(s) is




n+l
Y ag_y k-1
B k=1
Gji(s) = 42)

n
sn+ E by_1 sk—1
k=1

Note that since a feedforward mairix D is assumed,
Cij(s) may have equal-order (n) numerator and
denominator. AESOP uses the technique of reference 15,
modified slightly to include a D matrix, to compute
coefficients a; and by. Constants by are the coefficients
of the characteristic equation of A and are thus common
to all Gy;(s).

The second transfer function form computed by
AESOP is the so-called factored form, where the general
expression is given as

m
K;; J_Il (s+2zx)

i[l (s+pk)

where z; and py, are the transfer function zeros and poles,
respectively. In addition to poles and zeros, AESOP
computes gains K;; and the number of numerator zeros
m(m <n). The poles p, are obtained in AESOP simply as
the eigenvalues of A. The method for obtaining m and z;
depends on the value of Dj;.

For cases where Dj; is equal to zero the values of m and
2 are obtained by using a method developed by Davison
(ref. 16). The method is essentially based on a concept
from root locus theory. That is, if a proportional loop is
closed between output §; and input ii; and the loop gain is
allowed to increase to infinity, m of the root loci (poles of
the closed-loop transfer function) will go to the m open-
loop transfer function zeros, and the remainder (n —m)
will go off to infinity. Davison’s method successively
computes the eigenvalues of such a system while
increasing the loop gain. It stops when the n—m
“‘extraneous’’ eigenvalues all exceed a “‘large’’ value.

For cases where the value of ﬁij is nonzero, tlle number
of zeroes and poles of the transfer function G;i(s) are
both equal to n. In this case the zeroes are simply the
eigenvalues of the matrix

Ar= [A— b;é'T] (44)

d;

Gj(s) = 43)

where

BA[b; b, - b,]

(@l
e
[}
1

This fact can be seen by applying a feedback control
#j= ~k"y; @3)

to the system of equations (39) and (40) and allowing gain
k* to go to infinity. In the limit the eigenvalues of A*
become the zeros of the transfer function C,-j(s).

The remaining transfer function term in equation (43)
to be computed is gain Kj;;. AESOP uses the technique
described by Brockett (ref. 17) to compute this gain as

Kij= 46)
“sTAn—m—-1h y..—
ci An—-m-1 bj, d,-j—O

Computations for two types of transfer functions,
polynomial form and factored form, are performed in
AESOP series 500 and 700, respectively. System
configurations for which calculations are done are (1) an
open-loop system, (2) a systemn with state feedback, (3) a
system with a Kalman filter in the feedback loop, and
(4) an optimal controller. Polynomial-form transfer
function coefficients are computed for the purpose of
plotting frequency responses. The AESOP program uses
the same subroutines to compute frequency responses
and transfer functions for each configuration, first
forming the appropriate A, B, C, and D matrices as
functions of A, B, KE, KC, etc. Factored-form transfer
function information (poles, zeros, and gain) is mainly of
interest in one of two instances: (1) when investigating the
structure of the open-loop system, and (2) when
examining the pole-zero structure of an optimal
controller. Therefore data are obtained by AESOP only
for these two configurations. Frequency responses,
however, are obtained for all four configurations
mentioned previously. Table VII in the next section
outlines in detail which calculations AESOP does
perform.

Figure 8 shows the open-loop configuration for which
transfer functions and frequency responses can be
calculated. Corresponding to the form of equation (41),
the four transfer functions that AESOP computes here
are
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Figure 8. —Block diagram of open-loop system for which transfer functions and frequency responses are obtained. Inputs are # and w; outputs

are z; and y.

Control to output:

y(s) =[(sI—A)~! B+ DOUT]u(s) @7
Disturbance to output:

y(s)=C(sI-A) "1 D w(s) (48)
Control to measurement:

z(s)=H(sI-A)"1 B u(s) (49)
Disturbance to measurement:

z(s)=H(sI-A) "1 D w(s) (50)

Figure 9 shows the second configuration —a system
with state-variable feedback. Here AESOP computes the
following frequency responses by using disturbance w as
the input:

Disturbance to output:

Control, u
s

Disturbance,
w D

¥(s) = (C—DOUT-KO)[(SI - (A —B-KC)] ! D w(s)
(51
Disturbance to control:

u(s) = —KC[sI-(A-B-KC)] ! D w(s) (52)
Disturbance w is not explicitly used in the design of the
(noise free) linear quadratic regulator (e.g., eq. (14)).
However, it is instructive to examine its disturbance
response in the frequency domain.

Figure 10 depicts the configuration where disturbance
w is explicitly considered in the control system design,
namely the stochastic linear quadratic regulator. The
overall system order in this configuration is 2N, there
being N states x and N state estimates X. In obtaining
frequency responses AESOP first forms partitioned sys-
tem matrices before calling the subroutine that computes
the responses. The following responses are computed:

Disturbance to output:

69— fit

State, x | + Output, y

DouT

T

LQR gain matrix

-KC|

Figure 9. — Block diagram of LQR configuration used for obtaining frequency responses input is w; outputs are y and u.
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Figure 10. —Block diagram of stochastic LQR configuration used for obtaining frequency responses. Input is w; outputs are y, z, and u.

y(s) =CTOT (s - ATOT) ! DTOT w(s) (53)
Disturbance to measurement:

z(s) =HTOT (s - ATOT) ~! DTOT w (s) (54)
Disturbance to control:

u(s) =KCTOT (s — ATOT) ! DTOT w(s) (55)

where

CTOT =[C ! - DOUT-KC], NO X 2N
HTOT=[H 0], NM x2N

KCTOT=[0! —KC], NCx 2N

Note that measurement noise, although a consideration
in the Kalman filter design, is not considered here as an
input.

The last configuration for which frequency responses
as well as transfer function zeros and gain is computed is
the optimal controiler, shown in figure 11. This is simply
the feedback portion of the control loop of figure 10, the
stochastic regulator. The desired response is for measure-
ment z as an input and control u as an output. This
transfer function can be expressed as
u(s) = —KC[s1-(A-B-KC-KE-H)] ! KE z(s) (56)
It has been noted in the literature that this optimal
controller transfer function can have some interesting
properties; for example it can sometimes be unstable (ref.
18) or can have right-half-plane zeros (ref. 1).

Transient Response Calculation

The AESOP program computes and plots transient
responses for several important system configurations.
Consider again the general time-invariant system, which
is described in state-variable form as

%(£) =A &(¢) +B 6(r) (57)

§()=Cx()+D ii(2) (58)
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Figure 11. — Optimal controller, comprising Kalman filter and LQR gain matrix. Input is measurement z and output is control «.

In AESOP it was desired to solve these general equations
(57) and (58) for two cases: (1) an initial condition X(0),
and (2) a step change in input #(#). The normal
approach, and that taken in AESOP, is to discretize
equation (57) so as to obtain the exact solution at time
points fg, ¢y, . . ., ; that are spaced DT seconds apart.
The resulting discrete difference equations are thus

Xn+1=¥X,+ T, (59)
§,=Cx,+D i, (60)
where

Knt12%(fy41) (61)
Xo=%(10)=%(0) (62)

and matrices & and I are given by the series
representations

- - A2-DT2
d>(DT)=e(A'DT)=I+A-DT+%+. ) 63)
and
r SDT dr|B
[ o]

A-DT2 A2:-DT3 _
=<I-DT+A;)'T A;?T ..)B (64)

Matrix I' is computed by assuming that input @(f) is
constant over f,<t<t,,. The series in equations (63)
and (64) are carried out until the desired accuracy in &
and I is achieved.

The general procedure just described is used to
compute transients for the following three situations:
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(1) Open-loop system — The equations for this system,
shown in figure 3, are

x=Ax+Bu (65)

y=C x+DOUT u (66)
AESOP calculates and plots x and y for ITRMX time
points for either

(a) A step input applied to component / of input
u(t)

(b) An initial condition x(0) on the ith component of
the state vector x(¢).
These computations are performed by AESOP functions
601 and 602, respectively.

(2) Closed-loop linear quadratic regulator — Figure 4

shows the configuration of this system. The describing
equations are

x=(A-B-KC) x (67)

y=Cx+DOUT u (68)
Matrices A, B, C, and D are appropriately formed by
AESOP and variables x, y, and u= — KC x are calculated
and plotted. This is done for an initial condition x;(0) on
a selected component of x(0). Function 603 accomplishes
these calculations. The responses for x, y, and u can be
compared by the user with the open-loop responses in
order to help evaluate a particular LQR design.

(3) Nonzero-set-point linear quadratic regulator — This
system, shown in figure 5, is described by one state and
three ‘“‘output’’ equations:

=(A —B-KC) x + B-KFF ygq (69)
y=(C— DOUT-KC) x + DOUT-KFF y,q (70)
Ysp=CSP x (71)
u=—KC x+KFF ygq 72)



Here again, AESOP forms the appropriate matrices
before computing the responses. The response of interest
here is to a step change in a selected component of the set-
point vector ysng. Of interest to the user in this con-
figuration are such things as rise time and overshoot of
the kth component of ¥sp in response to a step change in
the kth component of yg,q; interaction —the response of
the kth component of yg, to a change in the ith component
of Yspds and the magnitudes of control variable
excursions. The computation and response plotting for
the nonzero-set-point regulator are performed by
AESOP function 604.

AESOP Program Operation

This section provides an overview of how to operate
the AESOP program. In particular, it discusses how the
user interfaces with the program within the IBM 370 TSS
PCS (Program Control System) environment, how to
enter data, how to enter a string of control numbers that
dictate the series of AESOP functions to be performed,
and in general, how the user interfaces with the program
at the ‘‘terminal,’’ not Fortran, level. (It is assumed that
the reader is familiar with PCS commands and the
operation of the 370 TSS system.)

Program Structure

The general structure and operation of AESOP was
described in the Introduction and shown schematically in
figure 1. A more detailed diagram of the program show-
ing the main AESOP program and nine main subroutines
is given in figure 12. Each main subroutine contains a
number of related AESOP functions. The numbers above
the main subroutine boxes in figure 12 indicate the
function series that each main subroutine contains (800
contains functions 801 to 899, etc.). The details as to
what each function does will be discussed later in this

All input and output performed by the main AESOP
program relate to program control and required inter-
facing with the user. The main program (1) initializes
default or reference values, (2) accepts a string of
function numbers that the user wishes to have performed,
(3) performs checks to see whether the user has requested
functions to be done in a reasonable order, and (4) calls
the appropriate main subroutines in which the desired
functions reside.

To run the AESOP program, the user first calls the
PROCDEF (for PROcedure DEFinition) AESRUN,
defined in appendix D. Through use of TSS/370 datadef
(DDEF) statements, AESRUN

(1) Defines (‘‘datadefs’’) the library dataset (file) that
contains the compiled AESOP program and all sub-
routines and then loads the program

(2) Defines the link to the graphics package that
contains graphics subroutines called by AESOP

(3) Links (‘‘datadefs’’) Fortran unit numbers with
specific dataset (file) names so that these files can be
written to or read from during the subsequent AESOP
run
AESRUN has a single parameter that is used to identify
all output datasets to be generated during the AESOP
run. After calling AESRUN, the user types ‘‘AESOP”’ to
run the program.

Operating Procedure

The key element in the use of AESOP is the single-
dimensioned function number array (Fortran symbol
IFN). The user loads, in sequence, this vector with the
numbers of the AESOP functions that are to be per-
formed. The use of the IFN vector and the general
operation of AESOP will be explained with the aid of the
flow chart of figure 13. The user many also refer to the
terminal listing included in appendix C for test case I for
an actual example of how AESOP is run. First, the user

section. types ‘“‘AESRUN” followed by its parameter. The
Main program,
AESOP
Main subroutines
100 I 200 300 400 500
Program Input Matrix Open-loop Frequency
control data formation system responses
analysis
600 700 800 900
. Optimal
Transient Transfer :
A control and User-supplied
responses functions filter design subroutines

Figure 12. — AESOP program structure.




r AESRUN [I.D. PARAMET
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r CALL AESOP
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DO YOU WISH TO MAKE

o

Heavy blocks indicate
occurrence of prompts or
terminal responses
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DO YOU WISH TO MAKE
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§ ENTER NAMELIST N1 DATA (IFN |

Figure 13. —Flow chart for AESOP program.

computer responds with information that the libraries
have been set up and all datasets have been datadeffed.
The user then types ‘“‘AESOP’’ to call the main program.
(Note that the heavy blocks in figure 13 indicate either
user input commands or messages printed out at the
user’s terminal.) The program then responds by prompt-
ing the user with the message:

DO YOU WISH TO MAKE PLOTS, Y OR N?
If the response is “‘Y,’’ the user is then asked to

ENTER THE PLOT NAME -~ 8 ALPHANUMERIC
CHARACTERS
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This name will be used to name the plot dataset in which
any plots generated will be stored. Next, the user is asked,

DO YOU WISH TO MAKE ON-LINE PLOTS, Y or N?

If the reply is ‘Y,”’ the program sets an internal flag that
will cause the program to PAUSE after each on-line plot
is displayed to allow the user to view it. Off-line plotting
requires no such action to be taken. Finally, the user is
asked for two pieces of information that will appear on
all plots for identification purposes:

ENTER TODAY’S DATE (LESS THAN OR EQUAL
TO 20 CHARACTERS)



Execute function
IFN(MZ)
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O ammzro )CO)T—(o)(Ts IFNM2) the number of an executable FEN? XYe9

Prerequisite 4
error Prerequisite No error
check

YOU HAVE NOT EXEC-
UTED THE FOLLOWING
PREREQUISITE
FUNCTIONS

A l

THESE ARE THE FUNCTIONS YOU HAVE RUN THUS
FAR. THE PRESENT FUNCTION IS NOT A LEGITI-
MATE ONE. YOU WILL NOW HAVE A CHANCE TO
REPLACE IT WITH ONE GOOD ONE, TO TERMINATE,
OR TO CENTER A LI ST OF FUNCTIONS.

TYPE Y TO ENTER ONE REPLACEMENT FUNCTION;
TYPE N TO ENTER A LI ST OF FUNCTIONS

TO COMPUTE FURTHER,
ENTER 1FN{I3), ONE PER
LINE; TO TERMINATE,
ENTER 999 (LAST ENTRY
MUST BE A RETURN}

A
YPE IN AN I3 NUMBER
0 REPLACE THE CURRENT
FUNCTION; IF THE NUMBER
IS 999, THE PROGRAM
ILL TERMINATE

Read new function

number into IFN

l

4
| Read 1FN(MZ)

¥
DDEF NAME OF N1
>
(No)_STORE THE N1 FOR THIS RUN? DATASET to 21

and

ENTER THE PARAMETER YOU USED FOR
AESRUN

End

Figure 13. — Concluded.

provided as part of AESOP. Thus the preceding messages
and prompts would be tailored by each user to reflect the
specific graphics package being used.

After the graphics-oriented prompts are handled, the
program displays the message

In view of the fact that graphics subroutines are rather
specific to the user’s computer system, they are not EXTENDED TERMINAL OUTPUT?
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(This question and all subsequent ones are to be answered
“Y”’ (yes) or “N’’ (no). All output produced by the
program is stored on the output dataset, which the
PROCDEF AESRUN datadeffed to unit 06. Two subsets
of this output are available for display on-line at the
user’s terminal. The EXTENDED TERMINAL
OUTPUT option (appendix D) allows the user to view a
more extensive subset of data if desired.
Next, the user is prompted with the message

READ IN N1 FROM STORAGE?

The NI referred to here is the name of a Fortran
NAMELIST that contains the vector IFN. For problems
that are solved over and over again, using the same
AESOP functions but different data, it is convenient to
store the NAMELIST N1 in a dataset to avoid having to
type it each time at the terminal. If this is the case, the
user would respond with ‘“Y’’ and the program would
print out

DDEF 21 TO THE N1 DATASET

At this point the user would then type the required
datadef statement, for example,

DDEF FT21F001,VS,MYNIDS

where dataset MYNIDS would contain typical
NAMELIST data such as

&N1 IFN =201,701,999 &END

However, to enter a new set of numbers into the IFN
vector, the user would enter ‘*‘N’’ and the program would
respond with

ENTER NAMELIST DATA AS ’&N1 IFN=, , , &END

At this point the user would fype a NAMELIST N1, such
as was given in the preceding example.

The IFN string can be terminated in two ways. If the
user ends it with a number greater than or equal to 999 (as
was done in the preceding example), the AESOP program
will execute all of the requested functions and then
terminate the run. (The number 999 is a request for
termination.) If the user ends the string with the number
of an executable function, the program will allow more
function numbers to be entered when the present string of
functions has been executed. In either case, as soon as the
NAMELIST has been read by the program, the program
displays all of the elements of the IFN vector at the
terminal and starts to execute the requested series of
functions.
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Figure 13 shows that the main program indexes integer
MZ each time just before it begins to execute a function.
This integer denotes the element of the IFN vector that
contains the number of the function about to be
executed. The program then performs four successive
checks on IFN (MZ), the MZth element of IFN. These
checks are

(1) Is the IFN(MZ)=999? If so, terminate the
program; if not, continue checking.

(2) Is IFN(MZ) <100 but not equal to zero? If so, you
have requested a nonexisting function and will be allowed
to change the requested number.

(3) Is IFN(MZ)=0? If so, you have reached the end of
the function number string requested and will now be
able to enter additional function numbers if desired.

(4) Is IFN(MZ) the number of an existing executable

function in series 100 to 900? If so, the function will be
executed; if not, you will be allowed (as in check (2)) to
change the requested number.
As an example, first, assume that the present IFN(MZ)
encountered is a nonexisting function number (.e.,
checks (2) or (4) above were failed). The program dis-
plays the messages

THESE ARE THE FUNCTIONS YOU HAVE RUN
THUS FAR

nnn
THE PRESENT FUNCTION IS NOT A LEGITIMATE

ONE, YOU WILL NOW HAVE A CHANCE TO
REPLACE IT WITH ONE GOOD ONE OR TO
TERMINATE OR TO ENTER A LIST OF FUNC-
TIONS. TYPE Y TO ENTER ONE REPLACEMENT
FUNCTION; TYPE N TO ENTER A LIST OF
FUNCTIONS

If the user types ‘‘Y,’’ the program responds with

TYPE IN AN I3 NUMBER TO REPLACE THE
CURRENT FUNCTION; IF THE NUMBER IS 999,
THE PROGRAM WILL TERMINATE

The user would then enter a new function number and the
program would repeat the four checks. If the new
number is that of an executable function, the program
proceeds to execute the function.

If the user types ‘‘N’’ in response to the previous
prompt, the program will display the message

TO COMPUTE FURTHER, ENTER NEXT
FUNCTION NOS. (13), ONE PER LINE;

TO TERMINATE ENTER 999 (LAST ENTRY MUST
BE A RETURN).

The user may then enter a series of function numbers,
hitting ‘“RETURN’’ after each three-digit number and



hitting ‘“RETURN?’ twice after entering the last number
in the series. The program also responds with the
preceding prompt whenever it encounters IFN(MZ) =0,
which is the indication that the end of the previously
requested function string has been reached.

The previous paragraphs have dealt with situations
where the program detects nonexistent function numbers
in the input string. In the case where the function number
is correct, the main AESOP program then calls the
appropriate main AESOP subroutine in which the func-
tion resides. At that point a prerequisite check is begun.
As a user aid the AESOP program contains a table of
prerequisite functions (appendix F). The program checks
the prerequisite table immediately before executing each
requested function to insure that the specified pre-
requisite functions have already been performed. For
example, suppose the user enters function number 401,
which requests that open-loop eigenvalues (of the A
matrix) be computed, without preceding this number
with either number 201 or 202, the functions that form or
read in data that define the system. Just before calling
function 401 the program checks the prerequisite table
and detects that the proper prerequisites (either function
201 or 202) have not been performed prior to this func-
tion. The program then displays the message

YOU HAVE NOT EXECUTED THE FOLLOWING
PREREQUISITE FUNCTION(S) FOR FUNCTION 401

and then prints out pertinent function numbers. It then
displays the message

IF YOU THINK YOU KNOW WHAT YOU ARE
DOING AND WISH TO IGNORE THE PREREQS
AND CONTINUE ON TO DO THIS FUNCTION,
TYPE Y AND RETURN; OTHERWISE, JUST
RETURN

The prerequisites in the table for each AESOP function
were selected so as to catch most, if not all, errors a user
might make in selecting a series of interdependent func-
tions that could lead to calculations that would produce
major errors. These would be errors such as zero divides
during inversion of a singular matrix, etc. It was felt that
protecting against these nuisance errors would make it
less likely that a user would have to restart the program in
midcourse because of a major nonrecoverable error.
However, it is still possible to select a series of functions
that produce nonsensical results even though prerequisite
checks show no error.

To terminate the program, the user types ‘999>’ when
the program asks for more function numbers. The pro-
gram will then display the message

STORE THE N1 FOR THIS RUN?

This allows the user to store the IFN vector, which was
just used in the present run, on a dataset for possible
future use. If this is desired, the user replies with *‘Y”’
and will receive the message

DDEF NAME OF N1 DATASET TO 22

The user would execute the required datadef, using
whatever dataset name was desired, and then type “GO”’
to cause the program to terminate. If the IFN array is not
to be stored, a previous response of ‘N’ would
terminate the run immediately.

Data Input and Output

A key aspect of the AESOP program is the handling of
data input and output. The primary input and ocutput
device is the user’s terminal. Most of the data sent or
received through the terminal pertain to program control,
as was demonstrated in the examples in the previous
section. That section also showed two examples of how
the program accesses data that are stored in a dataset
(IFN, read from unit 21) and how the program writes
data out to a dataset (writing IFN onto unit 22). In the
program, however, 14 unit numbers are used for input
and output of data (in addition to unit 02, reserved for
the terminal, and unit 06, reserved for the high-speed
printer output). All units are listed in table I together with
the names, contents, and format of their associated
datasets. Dataset names are created by the PROCDEF
AESRUN, which appends the characters in parameter $1
to an identifying prefix. For example, referring to table I,
if the parameter $1 were entered as XYZ, the PROCDEF
would datadef unit 08 to dataset CGXYZ. This dataset is
the one in which the control gain matrix KC is stored.
Other datasets that are identified by using the parameter
$1 are those datadeffed to unit 09 (containing the Kalman
filter gain matrix), units 10 to 14 (containing frequency
response magnitudes and phase angles), unit 15
(estimation error covariance matrix), unit 16 (control
Riccati equation solution matrix), and unit 17
(feedforward gain matrix). The remaining units, 33 and
34, are for datasets that store the data that define the
design problem to be solved by AESOP, namely the
open-loop plant data (unit 33) and normalizing factors
(unit 34). The user must datadef these units and specify
the names of their associated datasets.

Much of the input data for AESOP is in NAMELIST
form. Table II lists all NAMELIST’s used by the
program and the names of the Fortran variables
contained in each. A key NAMELIST is MATDAT,
which contains all matrix coefficients and dimensions
needed to define the problem to be solved. NAMELIST’s
CONPAR and ESTPAR, which are useful when
modifying basic problem data, contain subsets of the
variables contained in MATDAT. CONPAR is used for
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TABLE I. — DATASETS AND UNITS USED FOR PROGRAM INPUT AND OQUTPUT

Contents ofidataset

Unit | Dataset
name

02 | ——————~{ A1l terminal input and output

06 | OUT$12 | High-speed-printer output

08 CG31 KC, control gain matrix

09 EG31 KE, Kalman filter gain matrix

10 | PFRUZ$L | Frequency response, z(IMEAS)/u(JINC)
11 | PFRUYS1 | Frequency response, y(IOUT)/u(JINC)

12 | PFRWZ31 | Frequency response, z(IMEAS)/w(JIND)
13 | PFRWYSL | Frequency response, y(IOUT)/w(JIND)

14 CFR$L | Frequency response, u(JINC)/z(IMEAS)
15 PP31 PP, estimation error covariance matrix
16 S581 SS, control Riccati solution matrix

17 FFGI1 | KFF, feedforward gain matrix

21 {b) IFN vector, contained in NAMELIST N1
22 (b) IFN vector, contained in NAMELIST N1
33 (b) Open-loop plant data, NAMELIST's MATDAT and REFS
34 (b} Normalizing factors; NAMELIST NRMS

Format Function where Comments
read/written
Various Many Terminal input and output
Various Many
Unformatted 205/802
206/810
—————————————— See table VI for details
on frequency responses
208/816
207/808
] 209/820
NAMELIST Main program | For input of IFN
Main program | For output of IFN
202 Usual source of problem data
404 and 405

481 is the parameter for PROCDEF AESRUN; it serves as an arbitrary identifying tag (fewer than four characters) for the

naming of datasets).
User specified.

TABLE II. - NAMELISTS USED IN AESOP PROGRAM

U, o . - I - . .
NAMELIST Variables in NAMELIST Input source Comments
CONPAR | QC, NN, PCINV Terminal For revising weighting matrices;
read in function 203
ESTPAR | QQ, RRINV Terminal For revising noise power spectral
densities; read in functioq 204
MATDAT | A, B, C, D, H, DOUT, CSP, Terminal or dataset | Primary means of entering system
QC, NN, PCINV, QQ, RRINV data; read in function 202;
N, NM, NC, ND, NO changed in function 210
NRMS SCX, Scu, SCy, SCz, SCYSP Dataset Contains normalizing factors;
read in function 404 or 405
N1 IFN Terminal Program control; read or written
in main program
REFS TSFTR, DT, FI, DELF, ZERMAX, Terminal or dataset | See table III for definition of
AMPSP, AMPSR, AMPICX, IF, ISPACE, all variables and default values;
I0UT, IMEAS, JINC, JIND, ITRMX, set in main program; change in
NCURV, LINLOG, MSPY, MSPYSP, function 101; read in function
MSPU, MSROLY, MSROLX, MICCLY, 202
MICCLX, MICCLU, MICOLY, MICOLX

making changes in performance index weights, and
ESTPAR is used for varying noise matrix elements.

NAMELIST NRMS contains normalizing factors
whose use is described by equations (26) to (30). The
remaining NAMELIST, REFS, is used for setting various
parameter values that specify such things as time steps,
frequency point spacing and numbers, perturbation
amplitudes, and input and output selection indices. Table
II1 specifies each parameter in REFS and its default value
and indicates in which AESOP function each parameter
is used. For a more detailed explanation of each
parameter, refer to the appropriate function description
given in the next section.
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Description of AESOP Functions

Each AESOP function will now be described in
sufficient detail so that this section can serve as a primary
reference when using the program. All functions, as
indicated previously, are grouped into nine series (series
100 to 900). When possible, a general description will be
provided for each series, with an accompanying table
included to show similarities and differences among
functions within the series. Also, whenever possible, the
reader will be referred to appendix C, test case I, for an
example of the use of each function.



TABLE III. - DEFINITION OF PARAMETERS CONTAINED IN NAMELIST REFS

Variable Bimension Definition Defauit value Functions where used
DT Scalar Time step 0.05 sec Series 600 (transient responses);
functions 601 to 604
ITRMX Scalar Desired maximum number of time steps 100
AMPSR NCMAX Open-loop system step input amplitude vector A1l elements are set to 1.0
AMPSP NCMAX Closed-Toop system step input amplitude vector All elements are set to 1.0
AMPICX NMAX Initial-condition amplitude vector A1l elements are set to 1.0
MSROLY2  NCMAXD, NOMAXC Input/output selection matrix A1l elements are set to 1
MSROLXa  NCMAXD, NMAXC
MICOLYZ  NMAXD, NOMAXC
MICOLX3  NMAXP, NMAXC
MICCLYZ  NMAXD, NOMAXC
MICCLX3  NMAXD, NMAXC
MICCLUZ  NMAXD, NCMAXC
MSPYSP2  NCMAXD, NCMAXC
Mspya NCMAXD, NOMAXC
Mspya NCMAXD, NCMAXC \ v W
FI Scalar Starting frequency for frequency responses 0.01 Hz Series 500, frequency responses
DELF Frequency-point spacing 0.02 Hz
NCURV = 2, cross plot open- and closed-loop responses; 2
=1, closed loop only
LINLOG = 1, linear Bode plots; = 2, log Bode plots; 3
= 3, both linear and Tog plots
IF Desired number of frequency response points 49
ISPACE Every ISPACE frequency response point is listed 1 |
TSFTR \ Time scale factor, used for increased precision 1.0 |
10UT Scalar Index for selecting component of y vector 1 Series 500 {frequency responses)
and series 700 (transfer functions)
IMEAS Index for selecting component of z vector 1
JINC Index for selecting component of u vector 1 l
JIND ' Index for selecting component of w vector 1
ZERMAX Scalar 10 times value of largest expected transfer 100 rad/sec Series 700

function zero

aSee table VII for detailed description.

Row size.

CColumn size.

| {4




When running the AESOP program, it has been found
helpful to have available a brief list of all possible
functions. This list is provided in table IV. Once the user
has read this report and is generally familiar with what
the program can do, table IV can be used as a ready
reference guide while running AESOP. More specific
details on the various functions are given here.

Series 100 — Program Control

Series 100 contains only two functions: one for
changing reference parameter values, and the other to
allow the user to change datadefs in the middle of a run.

101 — Change reference values by using NAMELIST
REFS. —Table 111 describes various parameters in
NAMELIST REFS that are used in the AESOP program
to determine time and frequency steps, input and output
indices, etc. The table also gives the default values of
these parameter values that are initialized in the main
AESOP program. Function 101 allows the user to
change any or all of these parameters. It prompts the user
with the message

ENTER CHANGES TO NAMELIST REFS (TSFTR,
DT, FI, DELF, ZERMAX, AMPSP, AMPSR,
AMPICX, IF, ISPACE, IOUT, IMEAS, JINC, JIND,
ITRMX, NCURY, LINLOG, MSPY, MSPYSP, MSPU,
MSROLY, MSROLX, MICCLY, MICCLX, MICCLU,
MICOLY, MICOLX)

after which the user can enter the desired parameter
changes. An example of the use of function 101 appears
in appendix C, test case I, page 65.

102 - PAUSE to allow user to change datadefs. — If the
user requests this function, the program will display the
message

YOU MAY NOW CHANGE YOUR DDEEFS IF YOU
WISH. DON'T FORGET TO CLOSE AND RELEASE
THE OLD ONES FIRST

The program then effects a Fortran PAUSE and the
keyboard unlocks to allow the user to make the appro-
priate changes. This function is useful, for example,
when the user wishes to read in NAMELIST’s MATDAT
and REFS from dataset BBB, where previously similar
data had been read from dataset AAA. At the requested
PAUSE, the user can then enter

CLOSE AAA
RELEASE FT33F001

and then

DDEF FT33F001,VS,BBB
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and then type ‘GO’ to continue execution.
Subsequently, the user can request function 202, which
will read in the desired data from dataset BBB.

Series 200 — Data Input and Revision

This series of nine functions is used for inputting basic
problem-defining data from datasets or for inputting
changes to that data. The changes are typed in from the
user’s terminal.

201 — Forming matrices for test case I. — Function 201
is of use mainly when executing test case I, which is
presented in appendix C. Function 201 simply forms all
matrices and defines all dimensions, all of which are
included in NAMELIST MATDAT. The specific
matrices that this function forms for the test case are
shown in table V. The dimensions for this problem are
N=3, NC=2, NM=1, NO=2, and ND=2.

202 — Primary function for problem-defining data
input. — Function 202 is the one usually used for reading
in (from a VS dataset) the data that define the user’s
problem. The data must reside in the dataset in the
following NAMELIST form:

&MATDAT (data for variables in NAMELIST
MATDAT —see table II)
&END

&REFS (data for variables in NAMELIST REFS —
see table IT)
&END

Note that data for the two NAMELIST’s must be in the
order shown. It is not necessary to have any of the REFS
parameters entered if the user wishes to have AESOP use
the default values shown in table III. However, the entry
in the aforementioned dataset must then appear as
&REFS &END

203, 204, and 210— Functions used for revising data
that define the user’s problem. — Functions 203, 204, and
210 are useful when conducting design iterations, for
filter design, regulator design, or plant sensitivity studies.
Each function allows various parameter changes to be
made via NAMELIST’s from the user’s terminal. (For
NAMELIST definitions, see table I1.)

Function 203 is used to revise elements in the control
design performance index weighting matrices QC, NN,
and PCINV. NAMELIST CONPAR is used for this
purpose. Function 204 is used to revise elements in noise
power spectral density matrices QQ and RRINYV through
NAMELIST ESTPAR. These noise parameters, of
course, strongly influence the characteristics of the
associated Kalman filter. Function 210 is useful when
changes are to be made in any of the variables in



TABLE IV. - SUMMARY OF AESOP FUNCTIONS

Function Description Function Description Function Description
Program control Computel Piot |Store Transient function zeros
101 Change reference values Open-loop system analysis Open-loop system:
102 Program pause 701 utoz
401 Eigenvalues 702 utoy
Inputting or revising matrices 402 Eigenvectors and mode shapes 703 wtoz
403 Controllability, observability, 704 wtoy
Matrix input: and residues 705 Optimal controller
201 Matrices for test case 404 Normalization
202 Basic matrix data input 405 Unnormalization Function Description
Revising matrices: Frequency responses LQR [Kaiman filter
203 QC, NN, and PCINV (for LQR)
204 QQ and RRINV (for filter) Open loop: LQR, Kalman filter, and covariances
210 A, B, C, DOUT, H, CSP, QC, 501 502 503 utoz
NN, PCINV, QQ, and RRINV 504 505 506 utoy 801 809 Solve Riccati equation
507 508 509 wtoz 808 816 Store solution matrix SS/PP
Reading stored matrices: 510 511 512 wtoy 802 810 Store gain KC/KE
205 KC (from LQR) 805 813 Check positive-definiteness of SS/PP
206 KE (from filter) With state feedback: 806 814 Check symmetry of SS/PP
207 SS (from LQR) 513 514 wtoy 807 815 Compute residual error
208 PP (from filter) 515 516 wtou
209 KFF Function Description
‘ With Kalman filter feedback:
Matrix formation 517 518 wtoz Eigenvalues and eigenvectors
519 520 wtoy
301 A - B*KC 521 522 witou 803 E-values of A - BeKC
302 A - B-KC - KE-H 523 524 525 | Optimal controller 811 E-values of A - B*KC - KE+H
303 "Total" system matrices 812 E-values of ATOT
Transient response 804 E-vectors of A — BeKC
601 Open-loop step Covariances, etc.
602 Open-loop initial condition
603 Closed-loop LQR initial condition 817 Covariances of LQR system
604 Nonzero-set-point LQR step 818 Covariance error check
819 Feedforward yain calculation (KFF)
820 Store KFF

User-supplied subroutines

‘ 901 UZR901
902 UZR902

: 903 UZR903

i 904 UZR904

X4



TABLE V. - INPUT MATRICES FOR THIRD-ORDER TEST CASE

A= Input matrix
1 2 3
1 -0.1000D0-00| 1.000| 0.0000
2 0.0000 0.0000 1.000
3 0.0000 -1.000 | -0.20000-07
B = 1 2
1 0.0000 0.0000
2 0.0000 1.000
3 1.000 0.0000
D= 1 2
1 0.0000 0.0000
2 0.0000 1.000
3 1.000 0.0000
C = 1 2 3
1 1.000 0.0000 | 0.0000
2 0.0000 0.0000 | 1.000
H = 1 2 3
1 1.000 0.0000 | 0.0000
DOUT = 1 2
1 0.0000 0.0000
2 0.0000 1.000
1 . | R -

NAMELIST MATDAT, in particular, problem dimen-
sions and matrices A, B, C, D, DOUT, H, and CSP.
However, the noise matrices and the weighting matrices
can be modified here also if so desired.

205, 206, 207, 208, and 209— Functions for reading
gain and Riccati solution matrices. - AESOP contains
three functions (801, 809, and 819) that solve Riccati
equations and associated gain matrices and five functions
(802, 808, 810, 816, and 820) that store results in datasets.
Functions 205 to 209 are used for reading in datasets that
contain gain or Riccati solution matrices previously
computed by function 801, 809, or 819. Function 205
reads control gain matrix KC from dataset CG$1 (31 is
the parameter in PROCDEF AESRUN). Function 206
reads Kalman filter gain matrix KE from dataset EG$1.
Function 207 reads control Riccati solution matrix SS
from dataset SS$1. Function 208 reads Kalman filter
Riccati solution matrix PP from dataset PP$1. Function
209 reads feedforward gain matrix KFF from dataset
FFGS$1. Note that by using PAUSE function 102, the user
can appropriately re-datadef any of the preceding
datasets so as to read in the data from the particular
dataset desired. Refer to table I for definition of the unit
numbers associated with these five datasets.

Series 300 — Matrix Formation

The three functions in series 300 all take gain and open-
loop plant matrices and form various matrices related to
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CSP = Input matrix
1 2 3
1 1.000 0.0000 0.0000
2 0.0000 0.0000 2.000
QC = 1 2 3
1 500.0 0.0000 0.0000
2 0.0000 9.000 0.0000
3 0.0000 0.0000 0.40000-07
NN = 1 2
1 40.00 0.0000
2 0.0000 81.00
3 32.00 0.0000
PCINV = 1 2
1 0.1563D-01 | 0.0000
2 0.0000 0.12350-02
Q = ] 2 3
1 0.0000 0.0000 0.0000
2 0.0000 2.000 0.0000
3 0.0000 0.0000 20.00
RRINV = 1
1 1.000

closed-loop control system configurations. Separate
functions are assigned to forming these matrices because
a number of AESOP functions require these same
matrices as input. Table VI summarizes the three
functions and indicates for which other AESOP function
these three functions are prerequisites. Examples of using
these functions are given in appendix C; for 301, pages 69
and 79; for 302 and 303, page 70.

Series 400 — Open-Loop System Analysis

This series of five functions is used in conducting pre-
design analyses for the open-loop plant or for plant data
normalization.

401 — Open-loop system eigenvalues. —Function 401
simply computes the eigenvalues of the A matrix. The
eigenvalues are displayed in both Cartesian (o %/3) form
and polar (frequency and ¢) where the frequency is in
hertz and ¢ is the damping ratio, {4 -cos(arctan Bl/at).
A negative ¢ indicates a right-half-plane eigenvalue (or
pair). An example appears on page 68 of appendix C.

402 — Open-loop eigenvectors and mode
shapes. — Function 402 computes and prints out the
modified eigenvector matrix for the A matrix and also
these vectors in mode-shape form. Refer to the section
Theoretical Background for a description of the modified
eigenvector and mode-shape format. Note that one must
call function 401 before calling function 402. Use of
function 402 is also shown on page 68 of appendix C.



TABLE VI. — AESOP FUNCTIONS USED FOR MATRIX FORMATION

a A_f o BKC
AToT = [KE-‘H iE‘I_ETKC"I‘KE-'H"]’ 2NN

DTOT = [_g_], 2NXND

CTOT = [C | -DOUT-KC], NOx2N
HTOT = [H i0], NMx2N
KCTOT = [0 } —KC], NCx2N

403 — Controllability, observability, and
residues. — Prerequisites for function 403 are functions
401 and 402. Given the open-loop system described by A,
B, C, and H, function 403 computes the controls effec-
tiveness matrix (T~ ! B) and two system observability
matrices (H T and H C). Also, this function computes
the residues for systems (A, B, C) and (A, B, H). All
outputs are generated in mode-shape format. See page 68
of appendix C for an example of the use of function 403.

404 — Normalization of system matrices. — Function
404 allows the user to normalize all system matrices by
using scaling factors that have been prestored in a
dataset. The program prompts the user to datadef to unit
34 the dataset containing these (normalizing) factors. The
factors are defined as

Systemn Vector of Size
variable | normalization
(vector) factor
x SCX 50
u SCU 5
z SCZ 5
y SCY 50
Ysp SCYSP 5

The program initializes all normalizing factors to unity
before reading in the dataset. The (VS) dataset must
contain the data in NAMELIST form, where the
NAMELIST name is NRMS. An example of a dataset’s
contents might be

&NRMS SCX(1)=2., 3.,SCU(1)=42., SCU(3)=.22
&END

Here only the normalizing factors for the first and second
state variables and the first and third control variables are
to be nonunity. Matrices affected by normalization are

Function | Matrix formed | Dimension Equation Function where used
301 AMBKC NxN AMBKC = A - B-KC 513,515,603,
604,803,819
302 ABKCEH NxN ABKCEH = A — B+KC ~ KE+H 523,705,811
303 ATOT,DTOT,CTOT, (a) (a) 517,519,521,812
KCTOT,HTOT |

A, B, C, H, QQ, RRINV, D, DOUT, and CSP.
Examples of using function 404 and companion function
405 appear on pages 77 and 79 of appendix C.

405 — Unnormalization of matrices. — Function 405 is a
companion to function 404 and allows resultant matrices
KC, KE, KFF, and PP to be transformed back to
dimensional form if desired. If prior normalization of
input matrices is performed (via 404) in the same run of
AESOP, no new scaling factors need be read in.
However, function 405 automatically prompts the user
(as is done in function 404) for the dataset containing the
normalizing factors if not previously read in.

Series 500 — Frequency Responses and Bode Plots; and
Series 700 — Transfer Functions

Functions in these two series (500 and 700) are closely
related in that all allow the user to perform frequency
domain input/output calculations for both open- and
closed-loop system configurations. A general description
of these calculations is provided in the section Theoretical
Background under the heading Transfer Functions and
Frequency Response Calculations. All functions in series
500 and 700 are summarized in table VII. Four system
configurations are considered here:

Configuration Figure
Open loop 8
State-variable feedback 9

Kalman filter feedback 10
Optimal controller only 11

The figures describing the configurations appear in the
section Theoretical Background. As noted in table VII,
the user specifies the component of the input/output pair
of interest by selecting values for indices JINC, JIND,
IMEAS, or IOUT, which are all members of NAMELIST

25



TABLE VII. - AESOP FUNCTIONS FOR COMPUTING TRANSFER FUNCTIONS AND FREQUENCY RESPONSES

aIndices are included in NAMELIST REFS (table III).
transfer function or frequency response will be computed.

Index values determine

[ System Input Output AESOP program function numbers
configuration variable variable e - S
o - " Transfer functions Frequency responses
Name | Index@ | Name | Index@ [—-- R et e A B |
Numerator Poles | Magnitude, phase, [Response {Store magnitude
zeros and gain and coefficientsb [ plots and phase
Open loop u JINC z | IMEAS 701 401 501 502 503
u JINC y | IouT 702 504 505 506
W JIND z | IMEAS 703 i 507 508 509
y | IouT 704 510 511 512
State-variable feedback y | IouT — 803 513 €514 —
State-variable feedback u | JINC —_— 803 515 516 —_—
Kalman filter feedback z | IMEAS _— 812 517 €518 —-—
Kalman filter feedback y | IouT — 812 519 €520 -—
Kalman filter feedback u | JINC —_— 812 521 522 -—
Optimal controller only z IMEAS u JINC 705 811 523 524 l 525

vector input/output pair for which the

bComputes (1) coefficients of the transfer function numerator and denominator polynomials and (2) frequency response
magnitudes and phase angles for initial frequency FI(Hz), frequency spacing DELF(Hz), number of points IF(<1000), and

a time scale factor TSFTR.

CIf NCURV = 2, this closed-Toop response will be crossplotted with its corresponding open-loop response.

the open-loop response used is the last one calculated.

REFS. It can be seen that transfer function numerator
and denominator polynomial coefficients (eq. (42)),
frequency response calculations, storing of frequency
responses, and Bode plotting are available for all four
system configurations. Specific function numbers allow
the user to choose between control u or disturbance w
inputs and between noisy z or noise-free y outputs. One
exception is for the optimal-controller-only configura-
tion, where the only input is measurement vector z and
the output is the control vector u. Examples of the use of
500 series functions appear on pages 72 to 74 of appendix
C, including plotted output. Transfer function zeroes and
gain information can be obtained only for the open-loop
plant and for optimal controller configurations. How-
ever, transfer function poles can be computed for all
configurations. Note that these are all eigenvalue
computations and are included in series 400 or series 800.
Examples of the use of functions 701 to 705 are shown on
pages 76 and 77 of appendix C.

Frequency response data (frequency, amplitude, and
phase angle), which are stored on datasets by functions
503, 506, 509, 512, and 525, are all written by using a
Fortran WRITE statement of the form

WRITE (i, b) (FREQ(I),AMP(I), PHASE(I),I=1,IF)

Here, i is an appropriate unit number, IF is the number
of response data points, and FORMAT statement b is
FORMAT - (10G12.5). An appropriately formatted
READ statement would be used if one wished to use any
of these computed frequency responses in a separate
program.

26

Note that

Series 600 — Transient Responses

Transient responses—for either step or initial
condition inputs—are computed by the four AESOP
functions in this series. Pertinent information required to
use these functions is shown in table VIII. Functions 601
and 602 are for the open-loop system configuration and
603 and 604, for linear quadratic regulators. Note that to
use a function, the user should specify

(1) Input amplitude (or amplitudes),
vectors

(2) Desired time step, DT

(3) The number of time points to be computed,
ITRMX = 1000

(4) Desired input/output response pairs for which
responses are to be calculated, MS _ _ _or MIC _ _ _

All of these parameters are in NAMELIST REFS and
are set to default values in the main AESOP program (see
table III for default values). The transient response plots
that are generated by these functions will be generated on
the particular graphics device that the user has previously
defined. Examples of these plots and the use of functions
601 to 604 appear in test case I in appendix C.

AMP_ _ _

Series 800 — LQR and Filter Design

Functions in series 800 are for (1) solving the Riccati
equations associated with the LQR or Kalman filter
design problems or (2) related gain, covariance, or
eigenvalue/eigenvector calculations.

Functions for solving Riccati equations. —Table IX
lists the numbers of the functions in the 800 series that
deal directly with LQR or Kalman filter design. Three




TABLE VIII. - AESOP FUNCTIONS FOR COMPUTING TRANSIENT RESPONSES

Function| Type of transient Input Vector containing| Output Input/output
variable | input amplitudes | variables | select matrix?@
601 Step response of u AMPSR y MSROLY
open-loop system X MSROLX
602 Initial-condition y MICOLY
response of open- x(0) AMPICX
Toop system X MICOLX
603 Initial-condition y MICCLY
response of linear x(0) AMPICX X MICCLX
quadratic regulator u MICCLU
604 Step response of Ysp MSPYSP
nonzero-set-point Yspd AMPSP y MSPY
regulator u MSPU
aUse of input/output select matrices:
M XXXX (input index, output index) = 1, if response is to be calculated and plotted
0, otherwise

That is, for function 601, if response of y(3) to u(2) is desired, set MSROLY(2,3) =1
or, for function 602, if response of y(l) to an initial condition on x(2) is desired,
set MICOLY(2,1) = 1. A1l amplitude vectors and input/output select matrices are de-
faulted to all ones. They can be changed via NAMELIST REFS. Al1l responses are for
only one input or initial-condition component applied. Default for time step DT is
0.01 and that for time points ITRMX is 100, They can be changed via NAMELIST REFS.

TABLE IX. - RICCATI EQUATION SOLUTION

Task LQR design | Kalman filter
probiem design problem
Function
Solve matrix Riccati equation:
Number of function 801 809
Name of solution matrix SS PP
Name of gain matrix KC KE
Store Riccati results in dataset:
Function for storing solution matrix 808 816
Function for storing gain matrix 802 810
Riccati equation accuracy checks
performed on solution matrix:
Positive-definiteness 805 813
Symmetry 806 814
Residual error matrix | 807 815

types of functions are provided: (1) those for solving
Riccati equations, (2) those for storing Riccati equation
results in datasets for future use, and (3) those for
checking the accuracy of Riccati solutions. Companion
functions are provided in series 200 for subsequently
reading in the matrices computed and stored by functions
in the 800 series. Examples of the use of functions
involved with the LQR problem (801 to 808) are given in
appendix C, pages 68 to 70. Examples of Kalman filter
design calculations (functions 809 to 816) appear on
pages 70 to 72 of appendix C.

To read Riccati or gain matrices from datasets into
another program (e.g., into a program that implements
an LQR control law), the user must know the correct
Fortran READ statements to use. The appropriate
(unformatted) READ statements are as follows:

(1) For reading the control Riccati solution (stored in
dataset SS$1):

READ (i)((SS(1,)),I=1,N),J =1,N)

(2) For reading the Kalman filter Riccati solution
(stored in dataset PP$1):

READ @)((PP(1,)),I=1,N),J=1,N)

(3) For reading the LQR gains (stored in dataset
CG$1):l

READ ()}((KC(,3),I=1,NC),J=1,N)

(4) For reading the Kalman filter gains (stored in
dataset EGS$1):
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READ ()((KE(L,J),I=1,N),J=1,NM)

(5) For reading the feedforward gains (stored in
dataset FFG$1):

READ (i)}((KFF(,)),I=1,NC),J] =1,NC)

It is assumed that the user datadefs unit “‘/’ to the
appropriate dataset.

Functions for eigenvalue/eigenvector compu-
tation. — Table X lists the functions that compute eigen-
values and eigenvectors associated with either regulator
or filter designs. The eigenvalues and eigenvectors of the
matrix A —B-KC are those of the linear regulator. The
eigenvalues of matrix A —B-KC —~KE-H are those of the
optimal controller (depicted in fig. 11). The eigenvalues
of matrix ATOT are those of A—B-KC plus those of
A —KE-H, the latter being the Kalman filter eigenvalues.

TABLE X. ~ EIGENVALUE AND EIGENVECTOR
COMPUTATIONS IN SERIES 800

Matrix lEigenvalue I Eigenvector
l Function
A - B-KC 803 804
A - B+KC - KE-H 811 -
ATOT @ 812 —

aMatrix defined in table VI.

817 — Covariance matrices for system controlled by
linear stochastic regulator. —Function 817 implements
the solution to the state covariance matrix (Lyapunov)
equation given by equation (32) plus associated matrix
equations (33), (34), and (35). The latter equations
compute control, measurement, and output covariance
matrices. Normally, function 817 is called after com-
puting LQR gain matrix KC and Kalman filter gain
matrix KE. However, one or both of these two matrices
may be zero when function 817 is called. The resultant
state covariance matrix XX will then correspond to the
meaningful system configurations as shown in the follow-
ing table. An example of the use of function 817 appears
on page 72 of appendix C.

LQR gain | Kalman gain | System configuration for which Figure
matrix, matrix, XX is covariance matrix

KC KE

#0 #0 Linear stochastic regulator 7

=0 =0 Open-loop system with noise input 3

#0 =0 State feedback system with 9
noise input

=0 #0 Open-loop system with Kalman 6
filter
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818 — Covariance matrix error check. —Function 818
may be called after function number 817 to compute an
estimate of the error incurred in computing the state
covariance matrix. An example of its use appears on page
72 of appendix C.

819 — Feedforward gain matrix for nonzero-set-point
regulator. — Function 819 computes feedforward gain
matrix KFF, which is part of the nonzero-set-point
regulator. Matrix KFF is given by

KFF=[ - CSP(A-B-KC)~! B] '

The matrix KFF is needed when computing the closed-
loop system step responses with function 604. Functions
819 and 820 are demonstrated in test case I, appendix C,
on page 72.

820—Store feedforward gain matrix. — Function 820
stores KFF in a dataset by using the following un-
formatted WRITE statement:

WRITE(ii)((KFF(,J),I = 1,NC),J = 1,NC)

The user can read these data into another program by
using a matching Fortran READ statement.

Series 900 — User-Supplied Subroutines

A series of four function numbers have been set aside
for use as user-defined subroutines. These subroutines
are called UZR901, UZR902, UZR903, and UZR904.
Thus users may write their own special-purpose sub-
routines by using any of the above as subroutine names.
Linkage between the subroutine and the main AESOP
program would be achieved by using any of the
COMMON’s used in the AESOP program. Users need
not recompile the AESOP subroutine containing CALLS
to the four user-supplied subroutines, but need only
compile their subroutines into a library that has higher
priority in the JOBLIB chain than the ‘‘standard”
AESOP program library.

Concluding Remarks

The program described in this report was not meant to
be a static entity but rather was envisioned as a basic
structure to which can be added new and useful system
design functions as the need arises. Some functions
presently contemplated for future inclusion are discrete
LQR and Kalman filter gain calculations, time responses
for Kaiman filters to noise signal inputs, linear model-
order reduction procedures, LQR or Kalman filter ¢igen-
value sensitivity calculations, transient responses of



discrete LQR or Kalman filters, and multivariable fre-
quency domain control design algorithms.
Modifications are also envisioned that could improve
program-user interfacing. One would be to replace the
present function-number-input system with a set of
mnemonics (i.e., the user would enter LQR instead of 801
when requesting an LQR problem solution, etc.).
Another addition would be to allow the user to use a light
pen to select AESOP functions from a menu displayed on

a CRT terminal screen. The present program structure
has sufficient flexibility to accommodate these types of
additions without compromising present interactive
capability.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 14, 1983
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Appendix A

Symbols

Dimensions are given for all vectors, matrices, and
higher dimensional arrays. Where dimensions are not
given, the variable is a scalar quantity.

Variable

A
Am

A
ABKCEH
AMBKC
AMPICX

AMPSP

AMPSR

ATOT

-1l -1l -]

o
x

olle!

csp
CSP
CTOT

DELF

DOUT
DT
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Dimension

NxN
nxn

nxn
NxN
NxN
N

NC

NC

NTOT x NTOT

NXxNC
NxNC
nxnc

NOxN
noxn
NCxN
NCx N
NO X NTOT

no Xnc
NxND

NO XxNC

Description

system matrix

matrix whose eigenvalues
are transfer function
Zeroes

general matrix

matrix A—-B-KC—-KE-H

matrix A —-B-KC

vector of initial-condition
amplitudes

vector of input step
amplitudes for closed-loop
system

vector of input step
amplitudes for open-loop
system

system matrix for combined
regulator-Kalman filter
system

coefficient of transfer
function numerator
polynomial

control input matrix

controllability matrix

general matrix

coefficient of transfer
function denominator
polynomial

output matrix

general matrix

set-point output matrix

normalized CSP matrix

output matrix for combined
regulator-Kalman filter
system

general matrix

disturbance input matrix

spacing between frequency
points

feedforward matrix

time step

DTOT

IMEAS
10UT
ISPACE

ITRMX

JINC
JIND

i
KC
KCTOT

KE
KFF

kll
LINLOG

NTOT x ND

N

NxN
NMxNC

NM x NC
NMxN

NMXxN
NM xNTOT

NXxN

NCxN
NC xNTOT

N x NM
NCxNC

disturbance input matrix
for combined regulator-
Kalman filter system

Kalman filter estimation
error vector

error matrix (X —X)

selection matrix

initial frequency

transfer function matrix

transfer function

measurement matrix

observability matrix

measurement matrix for
combined regulator-
Kalman filter system

identity matrix

integer, number of desired
frequency response points

integer, index of meas-
urement

integer, index of output

integer, controls frequency
of frequency response
printouts

integer, number of desired
time response points

performance index

integer, index of control

integer, index of distur-
bance

transfer function gain

control gain matrix

control gain matrix for
combined regulator-
Kalman filter system

Kalman filter gain matrix

feedforward gain matrix for
nonzero-set-point
regulator

feedback gain term

integer, indicates whether
frequency response plots
are to be linear, log, or
both

matrix dimension



MICCLU

MICCLX

MICCLY

MICOLX

MICOLY

MSPU

MSPY

MSPYSP

MSROLX

MSROLY

NC
NCURV

NxNC

NXxN

NXxNO

NXxN

NXxNO

NCxNC

NCxNO

NCxNC

NCxN

NCxNO

Nx¢

integer, input/output,
closed-loop, initial-
condition response
selection matrix for
controls; state feedback

integer, input/output,
closed-loop, initial-
condition response
selection matrix for
states; state feedback

integer, input/output,
closed-loop, initial-
condition response
selection matrix for
outputs; state feedback

integer, input/output,
open-loop, initial-
condition response
selection matrix for
states

integer, input/output,
open-loop, initial-
condition response
selection matrix for
outputs

integer, input/output,
closed-loop, step response
selection matrix for
controls; state feedback

integer, input/output,
closed-loop, step response
selection matrix for out-
puts; state feedback

integer, input/output,
closed-loop, step response
selection matrix for set-
point outputs; state
feedback

integer, input/output,
open-loop, step response
selection matrix for states

integer, input/output,
open-loop, step response
selection matrix for
outputs

matrix, general factor of
QC matrix

integer, number of states

integer, number of controls

integer, controls cross
plotting of frequency
responses

ND

NM

NMAX

NN NxNC
NO

NTOT

n

nc

no

PCINV NCxNC
PP NxN

P

Q Ix{

QC NxN
QQ NxN
R; NM x NC
R NxN
RRINYV NM xNM
T

SCuU NC

SCX N

SCY NO
SCYSP NC |
SCZ NM

SS NxN

s

integer, number of
disturbances

integer, number of
measurements

integer, maximum number
of states

state-control weighting
matrix

integer, number of outputs

integer, 2XxX N

number of states for general
dynamic system

number of inputs for
general dynamic system

number of outputs for
general dynamic system

inverse of control weighting
matrix

Kalman filter error
covariance matrix

transfer function pole

symimetric, positive-definite
matrix

state weighting matrix

power spectral density
matrix of plant
disturbance

residue matrix of transfer
function matrix G(s)

residual matrix

inverse of power spectral
density matrix of
measurement noise

jth residue of transfer
function g(s)

vector of normalization
factors for controls

vector of normalization
factors for states

vector of normalization
factors for outputs

vector of normalization
factors for set-point
outputs

vector of normalization
factors for measurements

Riccati solution matrix for
linear quadratic regulator

Laplace variable
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T

TSFTR
t
Lisliv
[018)

Mk E g

"o
e

v e

YY

Ysp

¥spd
ZERMAX

7z

Z)

32

NxN

NCxNC
NC

NM
NxN
ND
NxN
NxN
NxN

NO xNO
NO
NC
NC

NM x NM

NM
NM

modified eigenvector
matrix

time scale factor

time

modified eigenvectors
control covariance matrix
control vector
measurement noise vector
general matrix
disturbance vector
general matrix

computed value of matrix X
state covariance matrix
state vector

modal state vector
estimated state vector
output covariance matrix
output vector

set-point vector

desired set-point vector

maximum expected value of
transfer function zeroes

measurement covariance
matrix
measurement vector

noise-free component of
vector z

Z NM
2k
o
B
r NxNC
¥ N
é N
(1)
7 N
A NxN
AiNiv1
T
3 NxN
Superscripts:
T
-1
Operators:
E{ }

estimated value of z

transfer function
numerator zero

real part of eigenvalue

imaginary part of
eigenvalue

forced-response matrix for
discrete system

real part of eigenvector

imaginary part of
eigenvector

unit impulse function

damping ratio

eigenvector

block diagonal form of A
matrix

complex eigenvalue pair

time

state-transition matrix

matrix transpose
matrix inverse

expected value of



Appendix B

Subroutine Descriptions

This appendix describes the AESOP main program and
all associated subroutines. A short description of each
subroutine is given, including what subroutines may call
it, and what subroutines it calls. Where a subroutine has
a parameter list, all variables in that list are defined.

A tape of the AESOP program documented in this
report is available from COSMIC. That version of
AESOP has been sized to accommodate systems having
the following dimensions:

N=50
NM =<5
NC =<5
ND <15
NO <50

If these dimensions are greater than or equal to the
corresponding dimensions of the user’s problem, the user
need make no changes to the main AESOP program
(assuming that the program will fit on the user’s
computer). However, the user may wish to resize the
program, either to accommodate problems with larger
dimensions or to reduce storage requirements in order to
allow the program to fit on a smaller computer. As
currently dimensioned, AESOP requires approximately
300 000 bytes for all Fortran source codes and about
1 700 000 bytes for variable storage (the variables in
COMMON’s appearing in the main program). To change
program dimensions, array dimensions appearing in 11
labeled COMMON’s must be changed. These
COMMON’s appear only in the main program and the
nine main subroutines (AES100 to AES900).

AESOP

kkkkhkkkkkkhkkkkkhkkkhkhkhhkkhkhkhkhkhkhhkhkkhkhkhrkkkkkhkhkkhkkkkkhhrdkkkhhhkihkkkk

AESOP IS THE MAIN ROUTINE. AESOP CALLS SUBROUTINES AES100,
AES200, AES300, AES400, AES500, AES600, AES700, AES800,
AES900, AND THE PLOTTING SUBROUTINES.

AESOP IS NOT CALLED BY ANY SUBROUTINES.

kkhkkkhkhkkhkkkhkkkkhkhkkkhkhkhkkkkhkkkkhkhkkhhkkhkkkhhhkkkhkkhhhkkhhhkhkhkkhhhkkkkik

SUBROUTINE AES100 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

Kkkhkkikkkkikkkkkkhkkhkhkkkhkhkhkkkhkhhkhkhkkkkhkkkkhkhkhkhkkkdhiikhhihhihkhhkhkkkik

SUBROUTINE AES100 CONTAINS THOSE FUNCTIONS WHICH PERFORM PROGRAM
CONTROL. AES100 CALLS SUBROUTINE PREREQ.
AEST00 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)
IFUNC  FUNCTION NUMBER
MZ WHICH FUNCTION IS TO BE DONE
IPRT PRINT OPTION: 1, STANDARD PRINT;
2, EXTENDED PRINT
WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:
IAND DECISION VARIABLE:

0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

dkkdkkkkkhkkkkhhhkhkhkkhkhhkhkkkkhkkhkkhkhkihkkikkkkikikkikhkhkhkikhkhhkkhhkhkhkhihikxk
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SUBROUTINE AES200 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)
FHAKARFK IR I T AT A K AE K I KT F Ak Fok k& dk Aok ok ko ok ko
SUBROUTINE AES200 CONTAINS THOSE FUNCTIONS WHICH INPUT DATA.

AES200 CALLS SUBROUTINES MATCHG, MATIN, MATPRT, MATRD, AND PREREQ.
AES200 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

MZ WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

QUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

dkkkhkkkkhkkkhkhkkhkhkkhkhkkkhkhkhkhkhkhkhhkhkrhkhkhkhkrkhkhkhkihkhkhkihkhhikhhhhkhhkhikkkx

SUBROUTINE AES300 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)
B T B
SUBROUTINE AES300 CONTAINS THOSE FUNCTIONS WHICH FORM MATRICES.

AES300 CALLS SUBROUTINES MATPRT AND PREREQ.
AES300 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

Mz WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

dkkkkhkkkkhkkkkkhkkhkhkhhkkkhkhhkkkhkkkkhhkhkkkkkhkhkhkkkkhkkkhkhkkkkhkkhkhkkhkkx

SUBROUTINE AES400 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

Fokdkkkkkdkkikkkdkkkkkkkkikhkkkkkkhkkkikkhkkkkkhkhhkihhkhkkkkikhkkkikikhkkkhhkkkhkikk

SUBROUTINE AES400 CONTAINS THOSE FUNCTIONS WHICH CALCULATE
CONTROLLABILITY, OBSERVABILITY, EIGENVALUES, EIGENVECTORS, AND
RESIDUES, AND WHICH PERFORM NORMALIZATION AND UN-NORMALIZATION.
AES400 CALLS SUBROUTINES CTBL, EGVCTR, EIGEN, MATPRT, MODSHP,
NRML, OBSBL, PREREQ, RESI, AND UNRML.

AES400 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER
MZ WHICH FUNCTION IS TO BE DONE



IPRT PRINT OPTION: 1, STANDARD PRINT;
2, EXTENDED PRINT
WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OQUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

EAAKAKKAKKRAKKARAR KA A AR AR AR AATR A A AR KA AR A AAARA AR R AR b kAR kA hdkkk

SUBROUTINE AES500 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

hhkhkRhkKRKKhhhkhkhkhhkhhkkkhkhkhhhkkhkkrkrkhhkhkkrrkrkrkhkhkkkkkkkhkkkkxkhhkkhkkk

SUBROUTINE AES500 CONTAINS THOSE FUNCTIONS WHICH CALCULATE
FREQUENCY RESPONSE AND BODE PLOTS.

AES500 CALLS SUBROUTINES BODE, FRSPNS, AND PREREQ.

AES500 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

MZ WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

KhkFhkhkhkAhkAkhkKXRAAAk Ak AkARAAA ALK AKAR kRN I AT IhhRRAhkhkhkhkkkkhhkkkhkhkhhkkh i

SUBROUTINE AES6Q00 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

hkkkhkkhkhhkhkkhkkkkhkkhkhkkhkkkhkhkhkkkkhkhkkhkhhkhhkkhkhkhkhhhkhkkkhkkhkkhkikhkhkhkhkhkk

SUBROUTINE AES600 CONTAINS THOSE FUNCTIONS WHICH CALCULATE

TIME RESPONSES AND THE ASSOCIATED PLOTS.

AES600 CALLS SUBROUTINES DSCRT, ICRSP, MATPRT, PREREQ, AND STP.
AES600 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

MZ WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

Fededededededededeodededokedeioiedeoded koo dodok dokodedok k dokoirke ko ok ke kek ke kA dok k ok kk ko kk Ak ke k ki ok
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SUBROUTINE AES700 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

kkkkkkkkhkkikhkhkkhkhkkiihkhkhhkhkkihkhkhkhkikhhhhdhkhkkikkhkkkkkkikihkkhihkk

SUBROUTINE AES700 CONTAINS THOSE FUNCTIONS WHICH CALCULATE
ZEROES AND GAINS.

AES700 CALLS SUBROUTINES GAIN, MATPRT, PREREQ, AND ZEROES.
AES700 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

Mz WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

dkkkkkhkkhkkhkkhhkhkhkkhkhkhkhkhkhkhkhkhkkkhkxhkhkhkhkhkxhkkhkkkAx kA kT EAAAN AL ARk X R A khdhkkk

SUBROUTINE AES800 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

FhkAkkAhhkAk kX hkkkhkkhkkkhhkkkhkkkhhkkhkkhhkkkdrhkhkkhhkhkhkhkhkbhkhhkdbhkkhhikhkkkhkhkikk

SUBROUTINE AES800 CONTAINS THOSE FUNCTIONS WHICH CALCULATE
EIGENVALUES AND EIGENVECTORS OF CONTROLS OR FILTERS, AND THE
FEED FORWARD, RICCATI, AND COVARIANCE EQUATIONS.

AES800 CALLS SUBROUTINES CONTRL, COVAR, EGVCTR, EIGEN, ESTMAT,
LYPCK, MATPRT, MODSHP, MXINV, PREREQ, AND RICCHK

AES800 IS CALLED BY MAIN PROGRAM AESOP,

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)

IFUNC  FUNCTION NUMBER

Mz WHICH FUNCTION IS TO BE DONE

IPRT PRINT OPTION: 1, STANDARD PRINT;

2, EXTENDED PRINT

WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:

IAND DECISION VARIABLE:
0, PREREQUISITES HAVE BEEN DONE,;
1, PREREQUISITES HAVE NOT BEEN DONE

*hkhkkkkkhkkkhkkkhkhkkhkkkkkhkhkkkkhkxxhkhkhhkhrhkkkkkkkkrrhkkkikhkkhhkkikkhkikdkk

SUBROUTINE AES900 (IFN, IFUNC, IAND, MZ, IPRT, WHEN)

Fkkkkkhkkkkhkhkkkkkkkkkkkkhkkhhhkkkhhkhkhkhkhkhkhkhhkkhkkikhkhhhkkkkkikkhkhkkikkkk

SUBROUTINE AES900 CONTAINS THOSE FUNCTIONS WHICH ARE SUPPLIED
BY THE USER. AES900 DOES NOT CALL ANY SUBROUTINES.
AES900 IS CALLED BY MAIN PROGRAM AESOP.

INPUTS:

IFN VECTOR OF FUNCTION NUMBERS TO BE DONE (1000)
IFUNC  FUNCTION NUMBER



MZ WHICH FUNCTION IS TO BE DONE
IPRT PRINT OPTION: 1, STANDARD PRINT;
2, EXTENDED PRINT
WHEN LOGICAL MATRIX OF PREREQUISITES (450,50)

OUTPUTS:
IAND DECISION VARIABLE:

0, PREREQUISITES HAVE BEEN DONE;
1, PREREQUISITES HAVE NOT BEEN DONE

*kkkhkkkhkkhkhkkhkkhkkkkkkhkkhkkhkkkkkhkhhkhkhkkhkkkkkhhhkkkkhhkikikkxkkikhkkk

SUBROUTINE ARRAY (IOPT,I,J,NROW,A)
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SUBROUTINE ARRAY CONVERTS AN ARRAY FROM VECTOR TO MATRIX OR THE
REVERSE. ARRAY DOES NOT CALL ANY SUBROUTINES. ARRAY IS CALLED BY
SUBROUTINES COVAR, EGVCTR, EIGEN, LYPCK, RICSS, AND ZEROES.

INPUTS:
10PT OPTION INDICATING TYPE OF CONVERSION
1 - FROM VECTOR TO MATRIX
2 - FROM MATRIX TO VECTOR
I NUMBER OF ROWS IN ACTUAL MATRIX
J NUMBER OF COLUMNS IN ACTUAL MATRIX
NROW NUMBER OF ROWS SPECIFIED FOR THE MATRIX A IN
DIMENSION STATEMENT
A IF MODE = 1, CONTAINS A VECTOR OF I*J LENGTH.
IF MODE = 2, CONTAINS A MATRIX OF N BY J SIZE.
OUTPUTS:
A IF MODE = 1, CONTAINS A MATRIX OF N BY J SIZE.
IF MODE = 2, CONTAINS A VECTOR OF I*J LENGTH.

AKKAKKRKRRAXX KA A IR AIAAAhkAdkhkhkkkkhkkkhkrkkhkhkhkkhkkdhkkkdhdkikkhdkiohkx

BLOCK DATA

FAAAARKA AKX AR A AR I I AR A AAAREAAARRAAR KA AR A A AR R AR ARk dhdkhhkkhxhkx

THE BLOCK DATA SUBROUTINE CONTAINS ONLY INFORMATION FOR PLOT
TITLES AND LABELS

K hkhkAAkhkkkkhkkhkkhhkhkdAhkkrdhdhhkkAxkAhAkhhhkAhkkrdhkrhhrdkhhrkkhkikkrkhhkx

SUBROUTINE BODE (FRQ, A1, A2, PHI1, PHIZ2, TTITL, TB, NPTS, KI,
1 AMP, PHA, SETAP, KTYPE1, KTYPE2, IP, NAME, IONPLT)

*hkkhkhkkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkkkhkrkhhhkhxhrhkdhhhrhkhhhkhhkkrdhhhkdaxhhikik

SUBROUTINE BODE MAKES PLOTS OF FREQUENCY RESPONSES. AMP, PHA AND
SETAP MUST BE SINGLE PRECISION BECAUSE OF THE PLOT SUBROUTINES.
BODE CALLS PLOTTING SUBROUTINES ONLY. BODE IS CALLED BY
SUBROUTINE AES500.

INPUTS:
FRQ VECTOR OF FREQUENCY
(DIMENSION IS LESS THAN OR EQUAL TO 500)

Al VECTOR OF AMPLITUDE FOR 15T CURVE
(DIMENSION IS LESS THAN OR EQUAL TO 500)
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A2 VECTOR OF AMPLITUDE FOR 2ND CURVE, IF DESIRED
(DIMENSION IS LESS THAN OR EQUAL TO 500)
PHIT VECTOR OF PHASE FOR 1ST CURVE
(DIMENSION IS LESS THAN OR EQUAL TO 500)
PHIZ VECTOR OF PHASE FOR 2ND CURVE, IF DESIRED
(DIMENSION IS LESS THAN OR EQUAL TO 500)
TTITL  TITLE OF PLOT
(DIMENSION IS GREATER THAN OR EQUAL TO 15)
T8 TITLE OF PLOT
(DIMENSION IS GREATER THAN OR EQUAL TO 15)
NPTS NUMBER OF POINTS PER CURVE
(LESS THAN OR EQUAL TO 500)
KI 1, IF ONE CURVE PER PLOT
2, IF TWO CURVES PER PLOT
KTYPE1) THESE TWO VARIABLES DEFINE WHETHER
THE PLOT IS TO BE LINEAR,
KTYPE2) LOG, OR SEMI-LOG
1P PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME
NAME NAME OF PLOT DATASET (9) (USED BY PLOTSUBS ONLY)
(PARTITIONED DATASET THAT HOLDS PLOT ENTITIES)
IONPLT 0, IF OFFLINE PLOTS
1, IF ONLINE PLOTS

OUTPUTS:

AMP STORAGE VECTOR OF AMPLITUDES FOR 1 OR 2 CURVES
(DIMENSION IS LESS THAN OR EQUAL TO 1000)

PHA STORAGE VECTOR OF PHASES FOR 1 OR 2 CURVES
(DIMENSION IS LESS THAN OR EQUAL TO 1000)

Ip PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME

TEMPORARY STORAGE :

SETAP  VECTOR
(DIMENSION IS LESS THAN OR EQUAL TO 500)

kkkkkkhkkdkkkhhkkkkhkkhhkkkdhkkkhhrhkhkkkkkhkhkhkkkhhkkhhkkkrhkkkhkkhkhkhkhkhkhkkihkkk

SUBROUTINE BOLLIN (A, AS, B, C, X, Y, Z1, 22, Z3, N, NMAX)

Fhkdkkkkkhkkhkhkhkhkkkkhkhkhkhhkkhkhhhrhhkrkkkhkhhkhkkhhhhhhrrrrrrhhrhhrkhikish

SUBROUTINE BOLLIN CONVERTS X(DOT)=AX+BU,Y=C(TRANSPOSE)X TO
TRANSFER FUNCTION Y/U=Z2/Z1 RATIO OF POLYNOMIALS.

BOLLIN CALLS SUBROUTINES DAVISO AND DANSKY. BOLLIN IS CALLED BY
SUBROUTINE FRSPNS.

INPUTS:
A SYSTEM MATRIX (N,N)
B SYSTEM VECTOR (N)
C SYSTEM VECTOR (N)
N ACTUAL SIZE OF MATRIX A
NMAX MAXIMUM SIZE OF N
OUTPUTS:
Z1 DENOMINATOR COEFFICIENT VECTOR (N)
2 NUMERATOR COEFFICIENT VECTOR (N)
73 NUMERATOR COEFFICIENT VECTOR (N)
TEMPORARY STORAGE :
AS MATRIX (N,N)
X VECTOR (N)
Y VECTOR (N)
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SUBROUTINE CONDI (VARO, SS, S, IN, JBL, IOR, NBL, IBL, IC, D,
1 I0P1, N, NMAX)

sk dekddkdkkdkkhdokdkkkkhkkkkhkhkkhkhkkkkkkkkkhkkhhkkkhkhkhkkkhkdhkkhhhkkhhkhkhkhikx

SUBROUTINE CONDI CHANGES CONDITION OF A MATRIX BY PUTTING IT IN
BLOCK DIAGONAL FORM (IF REDUCIBLE) AND THEN SCALING.

CONDI CALLS SUBROUTINES REDU AND SCALEA. CONDI IS CALLED BY
SUBROUTINES EIGEN AND ZEROES.

INPUTS:
VARO MATRIX TO BE CONDITIONED (N,N)
I0P1 PRINT OPTION; O NO PRINT, 1 PRINT
N ACTUAL SIZE OF MATRIX VARO
NMAX MAXIMUM SIZE OF N
OUTPUTS:
S CONDITIONED MATRIX (N,N)
IO0R BLOCK-DIAGONALIZING PERMUTATION INTEGER
VECTOR (N)
NBL INTEGER VECTOR OF SIZES OF EACH IRREDUCIBLE
BLOCK (N)
D VECTOR OF DIAGONAL ELEMENTS OF DIAGONAL SCALING
MATRIX (N)
TEMPORARY STORAGE :
SS MATRIX (N,N)
IN INTEGER VECTOR EN;
JBL INTEGER VECTOR (N

IBL INTEGER VECTOR %Ng
IC INTEGER VECTOR (N

dedededededok ok dedok dodedk ko kdkokdo ke kok kdkde ok Kk kk k ok ok kkkokodok ok ok ko ko ok ke ke ok kokkok kok ok kok kokk ok

SUBROUTINE CONTRL (AA, BB, QC, NN, PCINV, KC, SS, CR, CI, X, TS,
1°XR, TT, AAA, EXT, AR, AI, IPER, IPERN, ADBLE, N, NC, N2, IOP1,
2 10P2, NMAX, NCMAX, N2MAX)

* kkdhhkhkhhkhhhkhhkhidkhkhhkiikkhkhkdkkkkkkkkhkkhkkkhihikhkihikkkikkikhikhihkkikhkikk

SUBROUTINE CONTRL SOLVES THE OPTIMAL LINEAR REGULATOR PROBLEM. IT
SETS UP AN N2 BY N2 MATRIX AAA, USING MATRICES AA, BB, QC, NN, AND
PCINV. CONTRL OBTAINS THE SOLUTION TO THE RICCATI EQUATION, SS,
AND THEN COMPUTES THE CONTROL GAINS, KC. CONTRL CALLS SUBROUTINES
MATPRT AND RICSS. CONTRL IS CALLED BY SUBROUTINE AESS800.

INPUTS:

AA SYSTEM MATRIX (N,N)

88 CONTROL INPUT MATRIX (N,NC)

QC STATE WEIGHTING MATRIX (N,N)

NN STATE-CONTROL PRODUCT WEIGHTING MATRIX {N,NC)

PCINV  INVERSE OF CONTROL WEIGHTING MATRIX (NC,NC)
I0P1 SCALING PRINT OPTION: O, NO PRINT; 1, PRINT
10P2 EIGENVECTOR PRINT OPTION: O, NO PRINT; 1, PRINT

N NUMBER QF STATE VARIABLES
NC NUMBER OF CONTROL INPUTS
N2 DIMENSION OF HAMILTONIAN MATRIX, 2 X N

NMAX MAXIMUM SIZE OF N
NCMAX  MAXIMUM SIZE OF NC
N2MAX  MAXIMUM SIZE OF N2
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OUTPUTS:

KC CONTROL GAIN MATRIX (NC,N)

SS LQR RICCATI SOLUTION MATRIX (N,N)

CR VECTOR OF REAL PARTS OF EIGENVALUES OF AAA (N2)
CI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (NZ2)

X MODIFIED EIGENVECTOR MATRIX OF AAA (N2,N2)

TS SCALING TRANSFORMATION VECTOR OF AAA (N2)

AAA HAMILTONIAN MATRIX FOR LQR RICCATI
EQUATION (N2,N2)

TEMPORARY STORAGE :

XR MATRIX (N2,N2)
T MATRIX iuz,Nzg
EXT MATRIX (N2,N2
AR VECTOR (N2
Al VECTOR (N2

IPER INTEGER VECTOR (N2§
IPERN  INTEGER VECTOR (N2
ADBLE  VECTOR (N X N)
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SUBROUTINE COVAR (AA, BB, HH, CC, DOUT, QQ, PP, KC, N, NM, NC, NO,
1 XX, YY, 2Z, UU, A, Q, WORK, NMAX, NMMAX, NcMAX, NOMAX)

kkkkkkkkkkkkkhkkkhkikhkrhhkhhhkkkhkkikkhkkhkkikhikhkhkhkihkikhkhkhkihhkkikikhikkkikkxk

SUBROUTINE COVAR SETS UP MATRICES FOR SUBROUTINE LAPNV (LYAPUNOV
EQUATION) WHICH IS THEN CALLED TO OBTAIN STATE COVARIANCE MATRIX,
XX. XX, KALMAN FILTER ERROR COVARIANCE PP, AND CONTROL GAINS KC
ARE USED TO OBTAIN CONTROL COVARIANCE - UU, OUTPUT COVARIANCE

- YY, AND MEASUREMENT COVARIANCE - ZZ. COVAR CALLS SUBROUTINES
ARRAY, LAPNV, AND MATPRT. COVAR IS CALLED BY SUBROUTINE AES800.

INPUTS:
AA SYSTEM MATRIX (N,N)
BB CONTROL INPUT MATRIX (N,NC)
HH MEASUREMENT MATRIX (NM,N)
CC QUTPUT MATRIX {NO,N)
pouT FEED FORWARD MATRIX (NO,NC)
QqQ POWER SPECTRAL DENSITY MATRIX (N,N)
(OF PLANT DISTURBANCE)
PP KALMAN FILTER ERROR COVARIANCE MATRIX (N,N)
KC CONTROL GAIN MATRIX (NC,N)
N NUMBER OF STATE VARIABLES
NM NUMBER OF MEASUREMENTS
NC NUMBER OF CONTROL INPUTS
NO NUMBER OF QUTPUTS
NMAX MAXIMUM SIZE OF N
NMMAX  MAXIMUM SIZE OF NM
NCMAX  MAXIMUM SIZE OF NC
NOMAX  MAXIMUM SIZE OF NO
OUTPUTS:
XX STATE COVARIANCE MATRIX (N,N)
YY OUTPUT COVARIANCE MATRIX (NO,NO)
44 MEASUREMENT COVARIANCE MATRIX (NM,NM)
uu CONTROL COVARIANCE MATRIX (NC,NC)
TEMPORARY STORAGE :
A MATRIX éN,Ng
q MATRIX (N,N

WORK VECTOR (N)
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SUBROUTINE CTBL (B, CI, T, TINV, TINVB, EX1, ADBLE, LEX, MEX, N,
1 NC, NMAX)

*hhkkkhkkhkhkkkhkkkhkhkkikhhhkhhkhkkkkdhdhhkikkikikikhhhihihihhkhhhkhrhkhhhkkirkk

SUBROUTINE CTBL COMPUTES THE (RELATIVE) CONTROLLABILITY OF A
LINEAR SYSTEM DESCRIBED BY XDOT=A*X + B*U.

NOTE: FOR A COMPLEX EIGENVALUE PAIR, THE CORRESPONDING TWO COLUMN
ELEMENTS IN TINVB ARE STORED AS MAGNITUDE AND ANGLE (IN DEGREES)
RESPECTIVELY.

CTBL CALLS SUBROUTINES MATPRT AND MXINV. CTBL IS CALLED BY
SUBROUTINE AES400.

INPUTS:
B SYSTEM INPUT MATRIX B (N,NC)
CI VECTOR OF IMAG PARTS OF THE EIGENVALUES (N)
{OF MATRIX A)
T MODIFIED EIGENVECTOR MATRIX OF MATRIX A (N,N)
N NUMBER OF STATES
NC NUMBER OF INPUTS
NMAX MAXIMUM SIZE OF N
OUTPUTS:

TINV INVERSE OF MATRIX T (N,N)
TINVB  CONTROL EFFECTIVENESS MATRIX (N,NC)
( IN MAGNITUDE AND PHASE ANGLE FORM)
EX1 TINV*B WHERE TINV IS IN MODIFIED FORM (N,NC)

TEMPORARY STORAGE:

ADBLE  VECTOR OF LENGTH N X N
LEX INTEGER VECTOR (N%
MEX INTEGER VECTOR (N

kkkkhkhkhkhkhkkkhkhkikkkkhkhkhkhkkikkkhkkhkhkhkhkkhkkhhkhkhkkkkhkkhkihikkikkhkhkkkhkkkhkhkkhkik

SUBROUTINE DANSKY (A, X, Y, Z, N, NMAX)
Kk AR kAR A R KAk Ak ko ok koo ok ek ek ek ok ko ok ko deok ok ok ok ok ok
SUBROUTINE DANSKY COMPUTES THE COEFFICIENTS OF THE CHARACTERISTIC

EQUATION. DANSKY CALLS SUBROUTINE POLMPY. DANSKY IS CALLED BY
SUBROUTINE BOLLIN.

INPUTS:

AS CHARACTERISTIC EQUATION MATRIX (N,N)

N ACTUAL SIZE OF MATRIX AS

NMAX MAXIMUM SIZE OF N
OUTPUTS:

YA CHARACTERISTIC EQUATION COEFFICIENT VECTOR (N)
TEMPORARY STORAGE:

X VECTOR (N

Y VECTOR (N
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SUBROUTINE DAVISO (A, B, C, N, NMAX, MC)

Fhkdh ko Rk Kk dkkhkdokkkkkkhkkkkkkkkdokdkkdokkkkdokkokkkk Rk kR kx ko kkhkdk
SUBROUTINE DAVISO TRANSFORMS X(DOT)=AX+BU,Y=CSTRANSPDSE)X USING
Z=TX SUCH THAT Y IS A STATE VARIABLE OF Z(DOT)=TAT(INVERSE)+TBU.

DAVISO DOES NOT CALL ANY SUBROUTINES. DAVISO IS CALLED BY
SUBROUTINE BOLLIN.

INPUTS:

SYSTEM MATRIX é N)

A N
B SYSTEM VECTOR (N§
C SYSTEM VECTOR (N)
N ACTUAL SIZE OF MATRIX A
NMAX  MAXIMUM SIZE OF N

OUTPUTS:

A TRANSFORMED MATRIX A éN N)
B TRANSFORMED VECTOR B Ns

TEMPORARY STORAGE :
MC INTEGER SCALAR

KA A AR AAAAAAKRKAARAAAAKAR AR AR KRR IR A AR kR A A kdhddhkdhhkhkhkkhbhiid

SUBROUTINE DSCA (A, R, CC, N, MS)
EE d e  E it d i a T e
SUBROUTINE DSCA FORMS R = A + CC * I, FOR EITHER VECTOR OR MATRIX

IN VECTOR STORAGE MODE. DSCA DOES NOT CALL ANY SUBROUTINES.
DSCA IS CALLED BY SUBROUTINE LAPNV.

INPUTS:
A INPUT MATRIX (N,N), OR INPUT VECTOR (N)
cC CONSTANT
N ACTUAL SIZE OF SUBSCRIPT(S) OF MATRIX (VECTOR) A
MS DECISION VARIABLE, 2 = MATRIX, 0 OR 1 = VECTOR
OUTPUTS:
R QUTPUT MATRIX (N,N}, OR QUTPUT VECTOR (N)
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SUBROUTINE DSCRT (DT, A, N, NMAX, ITIMES, EADT, INTGRL, C)

kkkkkkkhkhkkhkkkkhkhkkkkhkkhkhkkhhhkkhhkrkhhkhkhkhkhkhkkhkhdhhhkkhhhkhkhhrkhhkhidkx

SUBROUTINE DSCRT CALCULATES EXP(A*DT) AND THE INTEGRAL

FROM O TO DT OF EXP(A*T). AFTER EACH TERM OF THE SERIES IS
MADE ON THE PERCENT CHANGE OCCURRING IN EACH TERM OF INTGRL.
WHEN ALL CHANGES ARE LESS THAN .00001 , COMPUTATION IS STOPPED.
IF ITIMES=50 BEFORE CONVERGENCE, DSCRT PROMPTS THE USER AS TO
WHETHER TO COMPUTE MORE TERMS IN ORDER TO OBTAIN CONVERGENCE.
DSCRT DOES NOT CALL ANY SUBROUTINES. DSCRT IS CALLED BY
SUBROUTINE AES600,



INPUTS:

DT TIME STEP

A INPUT MATRIX (N,N)

N ACTUAL SIZE OF MATRIX A

NMAX MAXIMUM SIZE OF N
OUTPUTS:

ITIMES NO. OF TERMS IN SERIES EXPANSION

EADT EXP(A*DT) (N,N

INTGRL INTEGRAL OF EXP(A*T) FROM T=0 TO T=DT (N,N)
TEMPORARY STORAGE :

c VECTOR (N)

* kkdokkdhkdkkhhkkkkhkhkhkkkhkkkkkhkkkkkkkkhkkikkkhkhkhkhkhhhhkhkhkhkkhkhkkhkkkkkkkik

SUBROUTINE EGCK (AAA, X, CPR, CPI, EXT, EX2, PLAM, N, NMAX)

K dehkkhkhkikkhkdkikhkikhkhkkkhkhkhkkhkhhkhkhkkkdkhkhkkkhkkhhkkkhkhkhkhkdihkhkhhkhkhkrkkhkikk

SUBROUTINE EGCK PERFORMS THE EIGENVALUE AND EIGENVECTOR CHECK. IT
FORMS (AAA * X) AND (X * LAMBDA). EGCK DOES NOT CALL ANY
SUBROUTINE. EGCK IS CALLED BY SUBROUTINE RICSS.

INPUTS:
AAA ORIGINAL MATRIX FOR WHICH EIGENVALUES
AND EIGENVECTORS WERE FOUND (N,N;
X MODIFIED EIGENVECTOR MATRIX (N,N
CPR VECTOR OF REAL EIGENVALUES (N)
CPI VECTOR OF IMAGINARY EIGENVALUES (N)
N ACTUAL SIZE OF MATRIX AAA
NMAX MAXIMUM SIZE OF N
OUTPUTS :

EXT AAA * X MATRIX (N,N
EX2 X * LAMBDA MATRIX (

TEMPORARY STORAGE :
PLAM MATRIX (N,N)
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)
N,N)

SUBROUTINE EGVCTR (AAA, CPR, CPI, X, N2, TT, EXT, AR, AI, IPERN,
1 IPER, IOP2, N2MAX, ISEL, IHALF)
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SUBROUTINE EGVCTR OBTAINS THE N2 BY N2 MODIFIED EIGENVECTOR MATRIX
X OF MATRIX AAA USING THE INVERSE ITERATION ALGORITHM. (THE
EIGENVALUES OF AAA SHOULD HAVE BEEN PREVIOQUSLY GENERATED USING
SUBROUTINE EIGQR AND STORED IN CPR AND CPI,) IEND SPECIFIES THE
NUMBER OF PASSES THRU THE INVERSE ITERATION ALGORITHM.

IF ISEL=0, ALL EIGENVECTORS ARE OBTAINED.

IF ISEL|O, 8%%%1&2% ISEL (AND NEXT ONE IF A COMPLEX PAIR) IS

IF ISEL O, THE ISELTH VECTOR IS PRINTED OUT AFTER EACH ITER.

IF IHALF=1, THE FIRST N2/2 VECTORS ARE OBTAINED.

IF IHALF .NE. 1, ALL VECTORS ARE OBTAINED.

EGVCTR CALLS SUBROUTINES ARRAY, FACTR, MATPRT, AND PRMUTE. EGVCTR
IS CALLED BY SUBROUTINES AES400, AES800, AND RICSS.
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INPUTS:

AAA MATRIX)FOR WHICH EIGENVECTORS ARE TO BE OBTAINED
(N2,N2
CPR VECTOR OF REAL PARTS OF EIGENVALUES (N2)
{OF AAA)
CPI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (N2)
OF AAA

N2 ACTUAL SIZE OF MATRIX AAA
10P2 PRINT OPTION: O, NO PRINT; 1, PRINT

N2MAX  MAXIMUM SIZE OF N2
ISEL SELECTION OPTION
IHALF  SELECTION OPTION
OUTPUTS:
X MODIFIED EIGENVECTOR MATRIX OF AAA (N2,N2)

TEMPORARY STORAGE:

IT MATRIX éNZ,NZ}
EXT MATRIX (N2,N2
AR VECTOR (N2
Al VECTOR (N2

IPERN  INTEGER VECTOR (NZg
IPER INTEGER VECTOR (N2
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SUBROUTINE EIGEN (A, EIGR, EIGI, EX1, SSS, S, IA, I8, LEX, MEX,
8L, IC, EX4, N, NMAX)

*hkkkhhkhkkkhkhkhkhkhkhkkhhkhkkdhkrkhhkhkkkkhkddhhkhkdhkkrdhkhkhkhkhkkhkhkikidrhhkkkihkkik

SUBROUTINE EIGEN OBTAINS THE EIGENVALUES (EIGR AND EIGI) OF N X N
MATRIX A BY FIRST REDUCING (IF A IS REDUCIBLE), THEN SCALING,
HESSENBURG TRANSFORMING AND FINALLY APPLYING THE 'QR' ALGOR ITHM
EIGEN CALLS SUBROUTINES SCALEA, CONDI, ARRAY, HSBG, AND EIGQR.
EIGEN IS CALLED BY SUBROUTINES AES400 AND AESS800.

INPUTS:
A MATRIX TO GET EIGENVALUES FOR (N,N)
N ACTUAL SIZE OF MATRIX A
NMAX MAXIMUM SIZE OF N

OUTPUTS:

EIGR VECTOR OF REAL PARTS OF EIGENVALUES (N)
EIGI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (N)

S MATRIX A IN REDUCED AND SCALED FORM (N,N)

LEX BLOCK-DIAGONALIZING PERMUTATION INTEGER
VECTOR (N)

MEX I%;EGE? YECTOR OF SIZES OF EACH IRREDUCIBLE
BLOCK (N

EX4 VECTOR OF DIAGONAL ELEMENTS OF DIAGONAL SCALING
MATRIX (N)

TEMPORARY STORAGE :
EX1 MATRIX éN.N

SSS MATRIX (N,

IA INTEGER VECTOR (N
18 INTEGER VECTOR (N
IBL INTEGER VECTOR {N
IC INTEGER VECTOR
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SUBROUTINE EIGQR (XR, N2, CR, CI, IOP, N2MAX)
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SUBROUTINE EIGQR COMPUTES THE EIGENVALUES OF MATRIX XR USING THE
QR ALGORITHM. THIS MATRIX MUST BE IN UPPER HESSENBERG FORM.

THE MAXIMUM NUMBER OF QR ITERATIONS USED IN FINDING ANY ONE
EIGQR DOES NOT CALL ANY SUBROUTINES. EIGQR IS CALLED BY
SUBROUTINES EIGEN, RICSS, AND ZEROES.

INPUTS:
XR MATRIX (IN UPPER HESSENBERG FORM) FOR WHICH
EIGENVALUES ARE TO BE FOUND (N2,N2)
N2 ACTUAL SIZE OF MATRIX XR
IopP PRINT OPTION
I0P|0, THE EIGENVALUES ARE WRITTEN ON UNIT 06
I0P=0, NO WRITING TAKES PLACE
I0OP 0, THE EIGENVALUES ARE WRITTEN ON UNIT 06 AND
ON UNIT 02 (TERMINAL)
N2MAX  MAXIMUM SIZE OF N2
OUTPUTS:
CR VECTOR OF REAL PARTS OF EIGENVALUES (N2)
CI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (N2)
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SUBROUTINE ESTMAT (AA, HH, QQ, RRINV, KE, PP, CR, CI, X, TS, XR,
1 TT, AAA, EXT, AR, Al, IPER, IPERN, ADBLE, N, NM, N2, I10P1,’ I0P2,
2 NMAX, NMMAX, N2MAX)

hkkkkkkkkhkkhkkkhkhkhkkhhkhkhkhhkhhkhhhkhhkhkhkhhhkhkhhkhhkhhkhhkrrkhhkhhdhhhhkhikhkihx

SUBROUTINE ESTMAT SOLVES THE OPTIMAL LINEAR STATE ESTIMATION
PROBLEM. IT SETS UP AN N2 BY N2 MATRIX AAA, USING MATRICES AA,
HH, QQ, AND RRINV. ESTMAT OBTAINS THE KALMAN FILTER ERROR
COVARIANCE, PP, AND THEN COMPUTES THE KALMAN FILTER GAINS, KE.
ESTMAT CALLS SUBROUTINES MATPRT AND RICSS. ESTMAT IS CALLED BY
SUBROUTINE AES800.

INPUTS:
AA SYSTEM MATRIX (N,N)
HH MEASUREMENT MATRIX (NM,N)
QQ POWER SPECTRAL DENSITY MATRIX (N,N)
(OF PLANT DISTURBANCE)
RRINV  INVERSE OF POWER SPECTRAL DENSITY MATRIX (NM,NM)
(OF MEASUREMENT NOISE)
10P1 SCALING PRINT OPTION: O, NO PRINT; 1, PRINT
I0P2 EIGENVECTOR PRINT OPTION: O, NO PRINT; 1, PRINT
N NUMBER OF STATE VARIABLES
NM NUMBER OF MEASUREMENTS
N2 DIMENSION OF HAMILTONIAN MATRIX, 2 X N
NMAX MAXIMUM SIZE OF N
NMMAX  MAXIMUM SIZE OF NM
NZMAX  MAXIMUM SIZE OF N2
OUTPUTS:
KE KALMAN FILTER GAIN MATRIX (N,NM)
PP KALMAN FILTER ERROR COVARIANCE MATRIX (N,N)
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CR VECTOR OF REAL PARTS OF EIGENVALUES (N2)

(OF AAA)

CI VECTOR(OF IMA?INARY PARTS OF EIGENVALUES (N2)
OF AAA

X MODIFIED EIGENVECTOR MATRIX OF AAA (N2,N2)

TS SCALING TRANSFORMATION VECTOR OF AAA (N2)

AAA HAMILTONIAN MATRIX FOR KALMAN FILTER RICCATI
EQUATION (N2,N2)

TEMPORARY STORAGE :

XR MATRIX éNZ’Nzi
T MATRIX (N2.N2
EXT MATRIX (N2,N2
AR VECTOR (N2)
Al VECTOR (N2)

IPER INTEGER VECTOR (N2)
IPERN  INTEGER VECTOR (N2)
ADBLE  VECTOR (N X N)

*kkkkkhkkkhkkkhkkhkhkhkhkhkhkhkkhkkhkkhkkhkhkkkkkhkhkhkhkkkkhkhkhkkkkhkkkhkhkhkkkkhkhkkkhkk

SUBROUTINE FACTR (A, PER, N, IA, IER)

*kkkkkkkhkkhkkkkhkhkhkkhhkhkhkhkkhkhhkkkkhkkkhkkkkkhkhkhkhkkkhhkhkkkhkkkhkkhkhkhkhkkhkhk

SUBROUTINE FACTR FORMS THE LOWER AND UPPER TRIANGULAR MATRICES OF
INPUT MATRIX A, SUCH THAT UPPER * LOWER = A,

FACTR DOES NOT CALL ANY SUBROUTINES. FACTR IS CALLED BY
SUBROUTINE EGVCTR.,

INPUTS:
A INPUT MATRIX (N,N)
N ACTUAL SIZE OF MATRIX A
IA SAME AS N
OUTPUTS:
A INPUT MATRIX IN UPPER AND LOWER TRIANGULAR

FORM (N,N)
PER TRANSPOSITION VECTOR FOR MATRIX A (N)
IER ERROR OPTION,
IF IER .NE. 0, FACTR IS WRONG
IF IER .EQ. 0, FACTR HAS WORKED CORRECTLY
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SUBROUTINE FRPOLY (Z1, Z2, DD, HZ, G, AMP, PHA, N)
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SUBROUTINE FRPOLY EVALUATES TRANSFER FUNCTION Z2(S) / Z1(S) FOR
S = 6.28 * HZ * J. FRPOLY DOES NOT CALL ANY SUBROUTINES. FRPOLY
IS CALLED BY SUBROUTINE FRQP.

INPUTS:
Z1 DENOMINATOR COEFFICIENT VECTOR
2 NUMERATOR COEFFICIENT VECTOR
DD DOUT OR 0.0
HZ FREQUENCY
N SIZE OF COEFFICIENT VECTORS
OUTPUTS:

G COMPLEX TRANSFER FUNCTION



AMP AMPL ITUDE
PHA PHASE
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SUBROUTINE FRQP (Z1, z2, DD, N, FI, DELF, IF, FREQ, AMP, PHASE,
1 ISPACE, TSFTR)
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SUBROUTINE FRQP GENERATES FREQUENCY RESPONSE AMP. AND PHASE, GIVEN
TRANSFER FUNCTION NUMERATOR AND DENOMINATOR POLYNOMIAL
COEFFICIENTS (GENERATED BY SUBROUTINE BOLLIN).

FRQP CALLS SUBROUTINE FRPOLY, WHICH COMPUTES AMPLITUDE AND PHASE.
FRQP IS CALLED BY SUBROUTINE FRSPNS.

INPUTS:
Z1 DENOMINATOR POLYNOMIAL COEFFICIENT VECTOR
2 NUMERATOR POGLYNOMIAL COEFFICIENT VECTOR
DD DOUT OR 0.0
N SIZE OF COEFFICIENT VECTORS
TSFTR  TIME SCALE FACTOR
Fl INITIAL FREQUENCY
DELF SPACING BETWEEN FREQUENCY POINTS
IF NUMBER OF DESIRED POINTS TO BE GENERATED
ISPACE CONTROLS FREQUENCY OF PRINTOUT FOR FREQ,

AMP AND PHASE
OUTPUTS:

FREQ FREQUENCY VECTOR
AMP AMPLITUDE VECTOR
PHASE  PHASE VECTOR
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SUBROUTINE FRSPNS (A DD, IOUT, JIN, N, TSFTR, DXM1, DXV1,
1 DXV2, DXV3, EXM1, kv1 Ekvz NMAX,” NOMAX, DDCOF, DNCOF,’FI,
2 DELF, IF, FREQ, AMP, PHASE, ISPACE, IPRNT]
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SUBROUTINE FRSPNS COMPUTES THE FREQUENCY RESPONSE OF THE IOUT
OUTPUT TO THE JIN INPUT OF THE SYSTEM XDOT = A*X + B*U ; Y = C*X
FRSPNS CALLS SUBROUTINES BOLLIN AND FRQP. FRSPNS IS CALLED BY
SUBROUTINE AES500.

INPUTS:
A SYSTEM MATRIX éN,N)
B SYSTEM MATRIX (N,NC)
c SYSTEM MATRIX (NO,N)
DD DOUT OR 0.0

IouT INDEX OF OUTPUT

JIN INDEX OF INPUT

N ACTUAL SIZE OF MATRIX A
TSFTR  TIME SCALE FACTOR

NMAX MAXIMUM SIZE OF N

NOMAX  MAXIMUM SIZE OF NO

FI INITIAL FREQUENCY
DELF SPACING BETWEEN FREQUENCY POINTS
IF NUMBER OF DESIRED POINTS TO BE GENERATED

ISPACE CONTROLS FREQUENCY OF PRINTOUT FOR FREQ,
AMP AND PHASE
IPRNT  PRINT OPTION, O IF STANDARD, 1 IF EXTENDED
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OUTPUTS:

DXV3  NUMERATOR COEFFICIENTS (N)
EXMT A * TSETR (N,N)

EXV1  JINTH ROW OF B * TSFTR (N)
EXV2  IOUTTH COLUMN OF C (N)

DDCOF  DENOMINATOR COEFFICIENTS (N)
DNCOF  NUMERATOR COEFFICIENTS (N)
FREQ  FREQUENCY VECTOR (500)

AMP AMPLITUDE VECTOR SSOO)

PHASE  PHASE VECTOR (500

TEMPORARY STORAGE :

DXM1  MATRIX (N,N)
DXV1  VECTOR %N%
DXV2  VECTOR (N
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SUBROUTINE GAIN (AA, 8B, CC, DD, II, JJ, N, NZ, GAYN, EX1, EX4, -
1 NMAX, NMMAX)
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SUBROUTINE GAIN IS A COMPANION TO SUBROUTINE ZEROES. GAIN
COMPUTES THE GAIN OF THE TRANSFER FUNCTION RELATING INPUT JJ AND
OUTPUT 11 OF THE FOLLOWING NTH ORDER SYSTEM.
(IN STATE VARIABLE FORM):

XDOT = AA* X + BB * U

Y=CC*X+DD*U
GAIN DOES NOT CALL ANY SUBROUTINES. GAIN IS CALLED BY SUBROUTINE
AES700.

INPUTS:
AA SYSTEM MATRIX (N,N)
B8 %O%B%Q% INPUT MATRIX (N,NUMBER OF POSSIBLE
NPUTS .
cC OUTPUT MATRIX (NUMBER OF POSSIBLE OUTPUTS,N)
0D SCALAR RELATING U(JJ) TO Y(II)
I1 INDEX OF OUTPUT Y
JdJ INDEX OF INPUT U
N ACTUAL NUMBER OF STATES
Nz NUMBER OF NUMERATOR ZEROES IN TRANSFER FUNCTION
{OBTAINED USING SUBROUTINE ZEROES)
NMAX MAXIMUM SIZE OF N
NMMAX  MAXIMUM NUMBER OF OUTPUTS
OUTPUTS:

GAYN TRANSFER FUNCTION GAIN

TEMPORARY STORAGE :

EX MATRIX éN
EX4 VECTOR (N}
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SUBROUTINE HSBG (N, A, IN)
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SUBROUTINE HSBG REDUCES A MATRIX INTO UPPER ALMOST TRIANGULAR
FORM. HSBG DOES NOT CALL ANY SUBROUTINES. HSBG IS CALLED BY

SUBROUTINES EIGEN, RICSS, AND ZEROES.



INPUTS:

N ACTUAL SIZE OF MATRIX A
A INPUT MATRIX (N,N)
IN MAXIMUM SIZE OF MATRIX A IN THE CALLING PROGRAM;

IN = N, WHEN MATRIX A IS IN VECTOR STORAGE MODE.
OUTPUTS :
A OUTPUT MATRIX (N,N)
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SUBROUTINE ICRSP (EX1, C, ICMTX, AMPIN, DT, TIME, TYOUT, XNEW,
1 XOLD, TTIT, TTOP, TYTIT, IEXT, N, NOUT, NMAX, NOUTMX, ITRMX, IP,
2 NAME, IONPLT)

% dedededokddekkdeddkdddieokkkkkkkkhdokkkdokk ik kikkkkkikkkkkkkikkkhklkkikikkikikk

SUBROUTINE ICRSP COMPUTES MULTIPLE INITIAL CONDITION RESPONSES OF
THE SYSTEM:  XDOT=A*X AND  TYOUT=C*X

BY SOLVING THE DIFFERENCE EQUATION:  XNEW=EX1*XOLD

THIS SUBROUTINE REQUIRES THAT THE STATE TRANSITION MATRIX,
EXP(A*DT), BE SUPPLIED AS INPUT MATRIX “EX1"., DESIRED INITIAL
CONDITION MAGNITUDES ARE SUPPLIED AS VECTOR °*AMPIN' AND THE
DESIRED INITIAL CONOITION-QUTPUT RESPONSE COMBINATIONS ARE
SELECTED BY APPROPRIATELY DEFINING ELEMENTS OF THE MATRIX ‘'ICMTX'.
ICRSP CALLS PLOTTING SUBROUTINES ONLY. ICRSP IS CALLED BY
SUBROUTINE AES600.

INPUTS:

EX1 STATE TRANSITION, EXP(A*DT), MATRIX (N,N)

¢ SYSTEM OUTPUT MATRIX (NOUT,N)

ICMTX  MATRIX OF ZEROES AND ONES (N,NOUT).
ONES ARE PLACED IN SELECTED MATRIX POSITIONS TO
INDICATE THE INITIAL CONDITION RESPONSES DESIRED.
THE FIRST INDEX IS *STATE', AND THE SECOND IS
'OUTPUT'. THUS SUBROUTINE ICRSP MAY CALCULATE AS
MANY AS N*NOUT INITIAL CONDITION RESPONSES.

AMPIN  VECTOR OF INPUT INITIAL CONDITION AMPLITUDES (N)

DT TIME STEP

TTIT PLOT TITLE (12)

TTOP PLOT TITLE (12)

TYTIT Y AXIS TITLE (4)

N ACTUAL SIZE OF STATE TRANSITION MATRIX

NOUT ACTUAL. NUMBER OF POSSIBLE OUTPUTS

NMAX MAXIMUM SIZE OF N

NOUTMX MAXIMUM SIZE OF NOUT

ITRMX  NUMBER OF DESIRED TIME RESPONSE POINTS

Ip PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME

NAME NAME OF PLOT DATASET (9) (USED BY PLOTSUBS ONLY)
(PARTITIONED DATASET THAT HOLDS PLOT ENTITIES)

IONPLT 0O, IF OFFLINE PLOTS
1, IF ONLINE PLOTS

OUTPUTS:

TIME VECTOR OF TIME POINTS (ITRMX)
(SINGLE PRECISION)

TYOUT  MATRIX OF OUTPUT TRANSIENT RESPONSES FOR ANY
ONE SPECIFIC INITIAL CONTIDION. (ITRMX,NOUT)
(SINGLE PRECISION)

1P PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME

TEMPORARY STORAGE :
XNEW  VECTOR (N

XOLD VECTOR (N
IEXT INTEGER VECTOR (N)
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SUBROUTINE LAPNV (A, X, B, QIN, NIN, WORK)
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SUBROUTINE LAPNV SOLVES THE LYAPUNOV EQUATION,
X*A' + A*X+B=0

WHERE A' IS A TRANSPOSE,

A, B, AND X ARE ALL NXN MATRICES IN VECTOR STORAGE MODE, B IS
SYMMETRIC ON INPUT, AND X IS SYMMETRIC ON OUTPUT.

STEP 1 CALCULATE X(0) = A‘*B*A

STEP 2 THE EXACT SOLUTION X IS THE LIMIT OF THE SEQUENCE X(M)
WHERE THE M REFERS TO THE M-TH TERM OF THE SEQUENCE.

COMPUTE EACH TERM X(M+1) RECURSIVELY, BASED ON X(M) AS FOLLOWS,
X(M+1)= X(M) + U(M)*X(M) * U'(M)

UéO = (Q*I-A') *#*(-1) * (Q*I+A')

U(M) = U(0) **(2*M)

LAPNV CALLS SUBROUTINES DSCA, MXINV, MXMLT, MXTRA, AND MXADD.
LAPNV IS CALLED BY SUBROUTINES COVAR AND LYPCK.

INPUTS:

A LYAPUNOV EQUATION MATRIX (NIN,NIN;

B LYAPUNOV EQUATION MATRIX (NIN,NIN

QIN CONVERGENCE FACTOR (TYPICALLY .1)

NIN ACTUAL SIZE OF MATRIX A

WORK(1) CONVERGENCE CHECK CRITERION (TYPICALLY 1.E-6)
OUTPUTS:

X OUTPUT MATRIX (NIN,NIN)

TEMPORARY STORAGE:
WORK VECTOR (2 X NIN X NIN)
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SUBROUTINE LOGSET (TMIN, TMAX, TNARR, INT)
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SUBROUTINE LOGSET CALCULATES THE DECADES NECESSARY TO INCLUDE THE
MINIMUM AND MAXIMUM OF THE DATA TO BE PLOTTED.
LOGSET DOES NOT CALL ANY SUBROUTINES.

INPUTS:
TNARR  ACTUAL DATA MINIMUM AND MAXIMUM (2)
LOCATION 1 HOLDS THE MINIMUM
LOCATION 2 HOLDS THE MAXIMUM
OUTPUTS:

TMIN MINIMUM DECADE FOR PLOTTING
TMAX MAXIMUM DECADE FOR PLOTTING
INT NUMBER OF INTERVALS FOR LOG AXIS
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SUBROUTINE LYPCK (A, Q, XHT, E, R, EX1, WORK, N, NMAX)
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SUBROUTINE LYPCK COMPUTES THE RESIDUAL AND ERROR MATRICES
ASSOCIATED WITH THE LYAPUNOV EQ.
A*X + X*¥AY*T + Q = 0

WHERE
SOLUTION=-=XHT
RESIDUAL=-=R=A*XHT + XHT*A**T + Q
ERROR~===~ E=XHT - X

WHERE A*E + E*A**T - R = 0

WORK VECTOR 'WORK' MUST BE DIMENSIONED |=2%N**2

BEFORE COMPUTING E, R IS SYMMETRIZED.

THE TRACES OF XHT, R, & E ARE PRINTED OUT; ALSO THE NORMALIZED
ERROR INDEX, TR(E}/TR(XHT), AND THE NORMALIZED DIAGONAL ELEMENTS
OF THE ERROR MATRIX ARE PRINTED OUT.

LYPCK CALLS SUBROUTINES MATPRT, ARRAY, AND LAPNV. LYPCK IS CALLED
BY SUBROUTINE AES800.

INPUTS:
A LYAPUNOV EQUATION MATRIX éN,N
Q LYAPUNOV EQUATION MATRIX (N,N
XHT LYAPUNOV SOLUTION MATRIX (N,N
N ACTUAL SIZE OF MATRIX A
NMAX MAXIMUM SIZE OF N

OUTPUTS:
E ERROR MATRIX (N,N)
R RESIDUAL MATRIX (N,N)

TEMPORARY STORAGE :

EX1 MATRIX (N,N)
WORK VECTOR (2 X N X N)
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SUBROUTINE MATCHG
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SUBROUTINE MATCHG IS USED FOR CHANGING MATRICES AND DIMENSIONS
USING NAMELIST 'MATDAT'. THE CHANGES IN MATDAT ARE READ IN FROM
THE TERMINAL. DATA IS TRANSFERRED TO PROGRAM AESOP VIA COMMONS
'ABETC' AND 'DIMS'. MATCHG DOES NOT CALL ANY SUBROUTINES. MATCHG
IS CALLED BY SUBROUTINE AES200.
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SUBROUTINE MATIN
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SUBROUTINE MATIN IS USED FOR INPUTTING MATRICES AND DIMENSIONS

FOR A 'SMALL' LQR/KALMAN FILTER PROBLEM TESTCASE. IT

ALSQO PRINTS OUT THE REFS NAMELIST. DATA IS PROVIDED FOR A 3RD
ORDER TEST CASE HAVING TWO CONTROLS AND TWO SET-POINT QUTPUTS, TWO
DISTURBANCES AND ONE NOISY MEASUREMENT. MATIN CALLS SUBROUTINE
MATPRT. MATIN IS CALLED BY SUBROUTINE AES200.
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SUBROUTINE MATPRT (A, N, M, NMAX)
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SUBROUTINE MATPRT PRINTS MATRIX A TEN COLUMNS PER PAGE. THE DEVICE
ON WHICH THE PRINTING TAKES PLACE IS CONTROLLED BY 'IUNIT'.
IUNIT=2---TERMINAL, IUNIT=6---LINEPRINTER.

MATPRT DOES NOT CALL ANY SUBROUTINES. MATPRT IS CALLED BY
SUBROUTINES AES200, AES300, AES400, AES600, AES700, AES800, COVAR,
CTBL, EGCK, LYPCK, MATIN, MATRD, MODSHP, OBSBL, RESI, RICCHK,
RICSS, AND UNRML.

INPUTS:
A MATRIX TO BE PRINTED (N,M)
N NUMBER OF ROWS IN MATRIX A
M NUMBER OF COLUMNS IN MATRIX A

NMAX MAXIMUM SIZE OF N
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SUBROUTINE MATRD
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SUBROUTINE MATRD IS USED FOR INPUTTING MATRICES, DIMENSIONS, AND
REFS USING NAMELISTS 'MATDAT' AND 'REFS'. MATDAT AND REFS ARE
READ IN FROM UNIT 33. DATA IS TRANSFERRED TO PROGRAM AESOP VIA
COMMONS 'COM1', 'ABETC', 'DIMS', 'DIMS2', AND 'REFCOM'.

MATRD CALLS SUBROUTINE MATPRT. MATRD IS CALLED BY SUBROUTINE
AES200.

kdkkkkkkkkkkikkkkkhkhkhkkkhkkkkhkkhkhkkhhkhkhhkkkkkkkkhhkkihkkhkkkhihkkhkkkhkkkikk

SUBROUTINE MODSHP (A, B, CI, N, NMAX)
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SUBROUTINE MODSHP CALCULATES MODE SHAPES IN MAGNITUDE AND
ANGLE (DEGREE) FORM. MODSHP CALLS SUBROUTINE MATPRT. MODSHP IS
CALLED BY SUBROUTINES AES400, AES800, AND RICSS.

INPUTS:
A MODIFIED EIGENVECTOR MATRIX (N,N
CI VECTOR OF IMAGINARY EIGENVALUES (N)
N ACTUAL NUMBER OF EIGENVALUES
NMAX MAXIMUM SIZE OF N

OUTPUTS:

B MODESHAPE IN MAGNITUDE AND ANGLE FORM (N,N)
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SUBROUTINE MXADD (A, B, R, N, M)
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SUBROUTINE MXADD ADDS TWO IDENTICALLY SIZED MATRICES TO FORM A
RESULTANT MATRIX. R CAN BE THE SAME AS A OR B IN THE CALLING
PROGRAM, MXADD DOES NOT CALL ANY SUBROUTINES. MXADD IS CALLED
BY SUBROUTINE LAPNV.

INPUTS:

A FIRST INPUT MATRIX (N,M)

8 SECOND INPUT MATRIX (N,M)

N NUMBER OF ROWS IN MATRICES A, B, AND R

M NUMBER OF COLUMNS IN MATRICES A, B, AND R
ouTPUTS:

R OUTPUT MATRIX (N,M)
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SUBROUTINE MXINV (A, N, D, L, M)
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SUBROUTINE MXINV INVERTS A DOUBLE PRECISION MATRIX IN VECTOR
STORAGE MODE BY USING THE GAUSS-JORDAN METHOD. THE DETERMINANT IS
CALCULATED BUT IS ZERO IF THE MATRIX BEING INVERTED IS SINGULAR.
MXINV DOES NOT CALL ANY SUBROUTINES. MXINV IS CALLED BY
SUBROUTINES AES300, AES800, CTBL, LAPNV, AND RICSS.

INPUTS:

A MATRIX TO BE INVERTED, VECTOR STORAGE MODE (N,N)

N ACTUAL SIZE OF MATRIX A
OUTPUTS:

A MATRIX INVERTED FORM, VECTOR STORAGE MODE (N,N)

D SCALAR DETERMINANT (ZERO IF MATRIX A IS SINGULAR)
TEMPORARY STORAGE :

L INTEGER VECTOR (N

M INTEGER VECTOR (N
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SUBROUTINE MXMLT (A, B, R, N, L, M)
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SUBROUTINE MXMLT MULTIPLIES TWO MATRICES IN VECTOR STOGAGE MODE
TO FORM A RESULTANT MATRIX IN VECTOR STORAGE MODE. MXMLT DOES
NOT CALL ANY SUBROUTINES. MXMLT IS CALLED BY SUBROUTINE LAPNV.

INPUTS:

FIRST INPUT MATRIX éN,L;
FIRST INPUT MATRIX (L,M
NUMBER OF ROWS IN MATRIX A
NUMBER OF COLUMNS IN MATRIX A
AND ROWS IN MATRIX B

NUMBER OF COLUMNS IN MATRIX B

X rzzex»

OUTPUTS:
R OUTPUT MATRIX (N.M)
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SUBROUTINE MXTRA (A, R, N, M)
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SUBROUTINE MXTRA TRANSPOSES AN N BY M MATRIX A IN VECTOR STORAGE
MODE TO FORM AN M BY N MATRIX R IN VECTOR STORAGE MODE. MXTRA
DOES NOT CALL ANY SUBROUTINES. MXTRA IS CALLED BY SUBROUTINE

LAPNV.

INPUTS:
A MATRIX TO BE TRANSPOSED (N,M)
N NUMBERS OF ROWS IN MATRIX A
AND COLUMNS IN MATRIX R
M NUMBERS OF COLUMNS IN MATRIX A
AND ROWS IN MATRIX R
OUTPUTS:

R RESULTANT MATRIX (M,N)
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SUBROUTINE NRML (A, B, C, H, Q, RINV, D, DOUT, CSP, N, NC, NO, NM,
1 ND, NMAX, NCMAX, NOMAX, NMMAX, FL34)
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SUBROUTINE NRML READS FOUR NORMALIZATION VECTORS FROM NAMELIST
NRMS AND NORMALIZES THE A, B, C, H, Q, RINV, D, DOUT, AND CSP
MATRICES. THE SYSTEM THUS REPRESENTED IS DEFINED BY NORMALIZED
STATE, CONTROL, OUTPUT, MEASUREMENT, AND SET POINT VECTORS.

THE NORMALIZATION VECTORS ARE TRANSFERRED TO THE MAIN PROGRAM
THROUGH COMMON 'NORMS'. NRML DOES NOT CALL ANY SUBROUTINES.
NRML IS CALLED BY SUBROUTINE AES400.

INPUTS:

UN-NORMALIZED SYSTEM MATRIX (N,N)
UN-NORMALIZED CONTROL INPUT MATRIX (N,NC)
UN-NORMALIZED OUTPUT MATRIX (NO,N?
UN-NORMALIZED MEASUREMENT MATRIX (NM,N)
UN-NORMALIZED POWER SPECTRAL DENSITY MATRIX OF
PLANT DISTURBANCE (N,N)
RINV UN-NORMALIZED INVERSE OF POWER SPECTRAL DENSITY
MATRIX OF MEASUREMENT NOISE (NM,NM)
D UN-NORMALIZED DISTURBANCE INPUT MATRIX (N,ND)
bout UN-NORMALIZED FEED FORWARD MATRIX FOR
NON-ZERO SET POINT REGULATOR (NO,NC)
ﬁSP UN-NORMALIZED SET POINT OUTPUT MATRIX (NC,N)

OTOEI

ACTUAL NUMBER OF STATES

NC ACTUAL NUMBER OF CONTROL INPUTS

NO ACTUAL NUMBER OF OUTPUTS

NM ACTUAL NUMBER OF MEASUREMENTS

ND ACTUAL NUMBER OF DISTURBANCE INPUTS

NMAX MAXIMUM SIZE OF N

NCMAX  MAXIMUM SIZE OF NC

NOMAX  MAXIMUM SIZE OF NO

NMMAX  MAXIMUM SIZE OF NM

FL34 LOGICAL VARIABLE, ON INPUT
TRUE, NORMALIZATION VECTOR INFORMATION
éNAMELIST NRMS) HAS ALREADY BEEN READ IN
ALSE, NORMALIZATION VECTOR INFORMATION
(NAMELIST NRMS) NEEDS TO BE READ IN



OUTPUTS:

NORMALIZED SYSTEM MATRIX (N,N)
NORMALIZED CONTROL INPUT MATRIX (N,NC)
NORMALIZED OUTPUT MATRIX (NO,N
NORMALIZED MEASUREMENT MATRIX (NM,N)
NORMALIZED POWER SPECTRAL DENSITY MATRIX OF
PLANT DISTURBANCE (N,N)

INV NORMALIZED INVERSE OF POWER SPECTRAL DENSITY
MATRIX OF MEASUREMENT NOISE (NM,NM)
NORMALIZED DISTURBANCE INPUT MATRIX (N,ND)

o O oOoOXTO®

pouTt NORMALIZED FEED FORWARD MATRIX FOR
NON-ZERQ SET POINT REGULATOR (NO,NC?
csp NORMALIZED SET POINT OUTPUT MATRIX (NC,N)
FL34 LOGICAL VARIABLE, ON OUTPUT SET TO
TRUE IF NAMELIST NRMS HAS BEEN READ IN
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SUBROUTINE OBSBL (H, T, CI, HT, EX1, N, NR, NRMAX, KMAX)
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SUBROUTINE OBSBL COMPUTES THE OBSERVABILITY MATRIX HT FOR THE
LINEAR SYSTEM DESCRIBED BY XDOT=A*X + B*U, AND Y=H*X.

NOTE: FOR A COMPLEX EIGENVALUE PAIR, THE CORRESPONDING TWO COLUMN
ELEMENTS IN HT ARE STORED AS MAGNITUDE AND ANGLE (IN DEGREES)

RESPECTIVELY.
0BSBL CALLS SUBROUTINE MATPRT. OBSBL IS CALLED BY SUBROUTINE
AES400.
INPYTS:
H SYSTEM OUTPUT MATRIX (NR,N)
T MODIFIED EIGENVECTOR MATRIX OF MATRIX A (N,N)
CI VECTOR OF IMAG PARTS OF THE EIGENVALUES (N)
(OF MATRIX A)
N ACTUAL NUMBER OF COLUMNS IN MATRIX H
NR ACTUAL NUMBER OF ROWS IN MATRIX H

NRMAX  MAXIMUM SIZE OF NR
NMAX MAXIMUM SIZE OF N

OUTPUTS:

HT OBSERVABILITY MATRIX (NR,N
(IN MAGNITUDE AND PHASE ANGLE FORM)
EX1 OBSERVABILITY MATRIX (NR,N)
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SUBROUTINE ORDER (CR, CI, NE, EPS)
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GIVEN A SET OF NE EIGENVALUES, SYMMETRICALLY LOCATED WITH RESPECT
TO THE IMAGINARY AXIS, SUBROUTINE ORDER PLACES ONES WITH POSITIVE
REAL PARTS IN FIRST NE/2 LOCATIONS. CORRESPONDING SYMMETRIC
EIGENVALUES WITH NEGATIVE REAL PARTS ARE PUT IN LOCATIONS

NE/2 + 1 THROUGH NE. EPS IS THE CONVERGENCE CRITERION USED IN
DETERMINING IF A PAIR OF EIGENVALUES ARE SYMMETRIC. ORDER DOES
NOT CALL ANY SUBROUTINES. ORDER IS CALLED BY SUBROUTINE RICSS.
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INPUTS:

CR VECTOR OF REAL PARTS OF EIGENVALUES
UNORDERED (NE)

cI VECTOR OF IMAGINARY PARTS OF EIGENVALUES
UNORDERED (NE)

NE NUMBER OF EIGENVALUES

EPS CRITERION FOR SYMMETRY

QUTPUTS :

CR VECTOR OF REAL PARTS OF EIGENVALUES
ORDERED (NE)

cI VECTOR OF IMAGINARY PARTS OF EIGENVALUES

ORDERED (NE)
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SUBROUTINE POLMPY (X, Y, Z, NX, NY, NZ)
LT L L Ll L LA L s pa s e e o P
SUBROUTINE POLMPY MULTIPLIES X*Y=Z (THE LEADING POLYNOMIAL

COEFFICIENT IS ASSUMED TO BE UNITY). POLMPY DOES NOT CALL ANY
ANY SUBROUTINES. POLMPY IS CALLED BY SUBROUTINE DANSKY.

INPUTS:
X POLYNOMIAL COEFFIENT VECTOR (NX)
Y POLYNOMIAL COEFFIENT VECTOR (NY)
NX ORDER OF POLYNOMIAL FOR WHICH VECTOR X IS THE
LIST OF COEFFICIENTS (OTHER THAN THE FIRST)
NY ORDER OF POLYNOMIAL FOR WHICH VECTOR Y IS THE
LIST OF COEFFICIENTS (OTHER THAN THE FIRST)
OUTPUTS :
Z X VECTOR * Y VECTOR (NZ)
NZ ORDER OF POLYNOMIAL FOR WHICH VECTOR Z IS THE

LIST OF COEFFICIENTS (OTHER THAN THE FIRST)
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SUBROUTINE PREREQ (WHEN, ICA, IAND, MZ, II)
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SUBROUTINE PREREQ CHECKS TO SEE IF PREREQUISITE CASES HAVE BEEN
DONE FOR THE CASE ABOUT TO BE RUN. IF NOT, IT PRINTS OUT WHAT THE
PREREQUISITES ARE. PREREQ DOES NOT CALL ANY SUBROUTINES. PREREQ
IS CALLED BY SUBROUTINES AES100, AES200, AES300, AES400, AES500,
AES600, AES700, AND AES800.

INPUTS:
WHEN LOGICAL MATRIX OF PREREQS (450,50)
ICA VECTOR OF CASE NUMBERS TO BE DONE (1000)
MZ WHICH CASE IS TO BE CHECKED FOR PREREQUISITES
II WHICH ROW OF MATRIX 'WHEN' IS TO BE LOOKED AT
OUTPUTS :

IAND DECISION VARIABLE, O IF PREREQUISITES HAVE BEEN
DONE, 1 IF PREREQUISITES HAVE NOT BEEN DONE
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SUBROUTINE PRMUTE (X, ITRANS, IA, NE, LA, NEMAX)
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SUBROUTINE PRMUTE PERMUTES ELEMENTS IN LA COLUMN OF NE BY NE
MATRIX X AS DICTATED BY TRANSPOSITION VECTOR ITRANS. ITRANS IS
PRODUCED, IN THIS CASE, BY SUBROUTINE FACTR.

PRMUTE DOES NOT CALL ANY SUBROUTINES. PRMUTE IS CALLED BY
SUBROUTINE EGVCTR.

INPUTS:
X MATRIX TO BE PERMUTED (NE,NE)
ITRANS TRANSPOSITION VECTOR (NE)
NE ACTUAL SIZE OF MATRIX X
LA SPECIFIC COLUMN OF MATRIX X TO BE PERMUTED BY
THE TRANSPOSITION VECTOR ITRANS
NEMAX  MAXIMUM SIZE OF NE
OUTPUTS :
X INPUT MATRIX IN PERMUTED FORM (NE,NE)
TEMPORARY STORAGE:
IA INTEGER VECTOR (NE)
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]S%ﬁﬁg?TINE REDU (VARO, SS, S, IN, JBL, INBL, IOR, NBL, IBL, IC, N,
N
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SUBROUTINE REDU USES HARARYS METHOD FOR REDUCTION OF A REDUCIBLE
MATRIX TO BLOCK DIAGONAL FORM. REDU DOES NOT CALL ANY SUBROUTINE.
REDU IS CALLED BY SUBROUTINE CONDI.

INPUTS:
VARO  MATRIX TO BE REDUCED (N,N)
N ACTUAL SIZE OF MATRIX VARG
NMAX  MAXIMUM SIZE OF N
QUTPUTS:
S BLOCK DIAGONAL MATRIX (N,N)
INSL  NUMBER OF REDUCIBLE BLOCKS
10R BLOCK-DIAGONALIZING PERMUTATION INTEGER
VECTOR (N)
NBL INTEGER VECTOR OF SIZES OF EACH IRREDUCIBLE
BLOCK (N)
TEMPORARY STORAGE :
SS MATRIX (N,N)
IN INTEGER VECTOR (N
JBL INTEGER VECTOR (N
18L INTEGER VECTOR (N

Ic INTEGER VECTOR (N)
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SUBROUTINE RESI (C, B, EIGR, EIGI, R, EXA, N, NC, NO, NMAX, NOMAX)
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SUBROUTINE RESI COMPUTES THE RESIDUE MATRICES FOR THE LINEAR
SYSTEM, XDOT=A*X + B*U, AND,  Y=C*X

WHERE THE SYSTEM IS ASSUMED TO BE IN BLOCK-DIAGONAL FORM.

MATRICES C AND B ARE INPUT TO THE PROGRAM. MATRIX C IS ASSUMED TO
HAVE BEEN TRANSFORMED TO THE FORM CORRESPONDING TO BLOCK-DIAGONAL
A MATRIX USING SUBROUTINE 0BSBL. MATRIX B IS ASSUMED TO HAVE BEEN
SIMILARLY TRANSFORMED USING SUBROUTINE CTBL.

NOTE: TWO RESIDUE MATRICES ARE PRINTED OUT FOR A COMPLEX
EIGENVALUE; THE FIRST CONTAINS RESIDUE MAGNITUDES AND THE SECOND
CONTAINS RESIDUE PHASE ANGLES IN DEGREES.

RESI CALLS SUBROUTINE MATPRT. RESI IS CALLED BY SUBROUTINE AES400.

INPUTS:

C OUTPUT MATRIX (NO N)

B INPUT MATRIX (N, C)

EIGR VECTOR OF REAL PARTS OF EIGENVALUES (N)

EIGI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (N)

N NUMBER OF STATES
NC NUMBER OF INPUTS
NO NUMBER OF OQUTPUTS

NMAX MAXIMUM SIZE OF N
NOMAX  MAXIMUM SIZE OF NO

OUTPUTS:
R RESIDUE ARRAY {N,NO,NC)
TEMPORARY STORAGE:

EXA MATRIX (NO,NC) TEMPORARILY STORES EACH RESIDUE
MATRIX BEFORE BEING PRINTED OUT
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SUBROUTINE RICCHK (AAA, S, R, N, NMAX, N2MAX)
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SUBROUTINE RICCHK COMPUTES THE RESIDUAL ERROR MATRIX FOR THE
RICCATI EQUATION

S*AAA(22)*T + AAA(22)*S - S*AAAé]Z)*S + AAA(21)

OR, =S*AAA(TT) - AAA(T11)*T*S - S*AAA(12)*S + AAA(21)

WHERE

S=RICCATI SOLUTION MATRIX

AAA=THE FOUR N BY N BLOCKS OF THE HAMILTONIAN MATRIX
R=RESIDUAL ERROR MATRIX

R IS GIVEN BY

R= S*AAA{ZZ?*T + AAA(22)*S - S*AAAé]Z}*S + AAA{21

==(S*ARA(11) + AAA(17)*T*S - S*AAA(12)*S - AAA(21))

Eggggg CALLS SUBROUTINE MATPRT. RICCHK IS CALLED BY SUBROUTINE

oo

INPUTS:
AAA HAMILTONIAN MATRIX (2 X N,2 X N)
S RICCATI SOLUTION MATRIX (N,N)
N ACTUAL SIZE OF MATRIX S

NMAX MAXIMUM SIZE OF N
NZMAX 2 X NMAX



OUTPUTS:
R RESIDUAL ERROR MATRIX (N,N)
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SUBROUTINE RICSS (AAA, OuTPUT, CR, CI, TS, XR, EXT, TT, IPER,
1 IPERN, AR, AI, ADBLE, IOP] IOP2 N, N2, NMAX N2MAX j
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SUBROUTINE RICSS COMPUTES THE OUTPUT SOLUTION TO THE STEADY STATE
MATRIX RICCATI EQUATION. THE INPUT IS AN N2 BY N2 MATRIX, AAA,
WHICH IS THE HAMILTONIAN MATRIX FOR KALMAN FILTER MATRIX RICCATI
EQUATION. RICSS CALLS SUBROUTINES ARRAY, MXINV, EGCK, EGVCTR,
EIGQR, HSBG, MATPRT, MODSHP, ORDER, AND SCALEA. RICSS IS CALLED
BY SUBROUTINES CONTRL AND ESTMAT.

INPUTS:
AAA HAMILTONIAN MATRIX FOR KALMAN FILTER RICCATI
EQUATION (N2,N2)
10P1 SCALING PRINT OPTION: O, NO PRINT; 1, PRINT
1opP2 EIGENVECTOR PRINT OPTION: O, NO PRINT; 1, PRINT
N NUMBER OF STATE VARIABLES
N2 DIMENSION OF HAMILTONIAN MATRIX, 2 X N
NMAX MAXIMUM SIZE OF N
NZMAX  MAXIMUM SIZE OF N2
OUTPUTS:
X MODIFIED EIGENVECTOR MATRIX OF AAA (N2,N2)
QUTPUT RICCATI SOLUTION MATRIX (N,N)
CR VECTOR OF REAL PARTS OF EIGENVALUES {N2)
(OF AAA)
Cl VECTOR(OF IMAGINARY PARTS OF EIGENVALUES (N2)
OF AAA
TS SCALING TRANSLORMATION VECTOR OF AAA (N2)
TEMPORARY STORAGE:
XR MATRIX (N2,N2
EXT MATRIX ENZ,NZ
1T MATRIX (N2,N2
IPER INTEGER VECTOR &NZ}
IPERN  INTEGER VECTOR
AR VECTOR NZ;
Al VECTOR
ADBLE  VECTOR X N)
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SUBROUTINE SCALEA (A, TS, N2, IOP1, N2MAX)
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SUBROUTINE SCALEA TRANSFORMS N2 BY N2 MATRIX A USING DIAGONAL
MATRIX TS SO THAT THE NORM OF A IS MINIMIZED. THE RESULTING SCALED
MATRIX IS STORED IN A. IF SCALEA FINDS A TO BE REDUCIBLE, IER IS
SET TO 1. SCALEA DOES NOT CALL ANY SUBROUTINES. SCALET IS CALLED
BY SUBROUTINES CONDI, EIGEN, AND RICSS.

INPUTS:
A MATRIX TO BE SCALED (N2,N2)
N2 ACTUAL SIZE OF MATRIX A

10P1 PRINT OPTION; O NO PRINT, 1 PRINT
NZ2MAX  MAXIMUM SIZE OF N2
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OUTPUTS:

A INPUT MATRIX IN SCALED FORM (N2,N2)
TS VECTOR OF DIAGONAL ELEMENTS OF DIAGONAL SCALING

MATRIX (N2)
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SUBROUTINE STP (EX1, EX2, B, C, DOUT, IOMTX, AMPIN, DT, TIME,
1 TYOUT, XNEW, XOLD, ANR, TTIT, TTOP, TYTIT, IEXT, N, NIN, NOUT,
2 NMAX, NINMAX, NOUTMX, ITRMX, IP, NAME, IONPLT)
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SUBROUTINE STP COMPUTES MULTIPLE STEP RESPONSES OF THE SYSTEM
XDOT=A*X+B*U; TYOUT=C*X+DOUT*Y
BY SOLVING THE DIFFERENCE EQ.
XNEW=EX1*XOLD + EX2*B*AMPIN(L)
THIS SUBROUTINE REQUIRES THAT THE STATE TRANSITION MATRIX,
EXP(A*DT), AND ITS INTEGRAL FROM TIME=0 TQ TIME=DT, BE SUPPLIED AS
INPUT MATRICES 'EX1' AND 'EX2'. DESIRED INPUT STEP MAGNITUDES ARE
SUPPLIED AS VECTOR 'AMPIN' AND THE DESIRED STEP INPUT-OUTPUT
RESPONSE COMBINATIONS ARE SELECTED BY APPROPRIATELY DEFINING
ELEMENTS OF THE MATRIX 'IOMTX'. STP CALLS PLOTTING SUBROUTINES
ONLY. STP IS CALLED BY SUBROUTINE AES600.

INPUTS:

EX1 STATE TRANSITION, EXP(A*DT), MATRIX (N,N)

EX2 INTEGRAL OF THE STATE TRANSITION MATRIX FROM
TIME=0 TO TIME=DT (N,N)

B (CONTINUOUS) SYSTEM INPUT MATRIX (N,NIN)

C SYSTEM OUTPUT MATRIX (NOUT,N)

bouT SYSTEM INPUT/OUTPUT FEEDTHRU MATRIX (NOUT,NIN)

IOMTX  MATRIX OF ZEROES AND ONES (NIN,NOUT).
ONES ARE PLACED IN SELECTED MATRIX POSITIONS TO
INDICATE THE STEP RESPONSES DESIRED. THE FIRST
INDEX IS 'INPUT', THE SECOND IS 'OUTPUT'. THUS
SUBROUTINE STP MAY CALCULATE AS MANY AS NIN*NOUT
STEP RESPONSES.

AMPIN  VECTOR OF INPUT STEP AMPLITUDES (NIN)

oT TIME STEP

TTIT PLOT TITLE (12)

TTOP PLOT TITLE (12)

TYTIT Y AXIS TITLE (4)

N ACTUAL SIZE OF STATE TRANSITION MATRIX

NIN ACTUAL NUMBER OF POSSIBLE INPUTS

NOUT ACTUAL NUMBER OF POSSIBLE OUTPUTS

NMAX MAXIMUM SIZE OF N

NINMAX MAXIMUM SIZE OF NIN

NOUTMX MAXIMUM SIZE OF NOUT

ITRMX  NUMBER OF DESIRED TIME RESPONSE POINTS

Ip PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME

NAME NAME OF PLOT DATASET %9 (USED BY PLOTSUBS ONLY)
(PARTITIONED DATASET THAT HOLDS PLOT ENTITIES)

IONPLT 0, IF OFFLINE PLOTS
1, IF ONLINE PLOTS

OUTPUTS:

TIME VECTOR OF TIME POINTS (ITRMX)
(SINGLE PRECISION)

TYOUT MATRIX OF OUTPUT TRANSIENT RESPONSES FOR ANY
ONE SPECIFIC INPUT STEP (ITRMX,NOUT)
(SINGLE PRECISION)

Ip PLOT ENTITY INDEX (USED BY PLOTSUBS ONLY)
INCREASES BY ONE FOR EACH FRAME



TEMPORARY STORAGE :

XNEW VECTOR (N
XOLD VECTOR (N
ANR VECTOR (N
IEXT INTEGER VECTOR (N)
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SUBROUTINE UNRML (KC, KE, KFF, PP, NC, NM, N, NCMAX, NMAX, FL34)
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SUBROUTINE. UNRML IS USED TO CONVERT NORMALIZED KC, KE, KFF, & PP
MATRICES TO UN-NORMALIZED FORM. NORMALIZATION VECTOR INFORMATION
IS FED IN THRU COMMON 'NORMS' OR IF NECESSARY, READ IN OFF UNIT 34
AS NAMELIST NRMS. IF FL34 IS .TRUE., IT MEANS THAT NRMS HAS
ALREADY BEEN READ IN BY SUBROUTINE NRML & THUS IT SHOULDN'T BE
READ IN HERE. UNRML CALLS SUBROUTINE MATPRT. UNRML IS CALLED BY
SUBROUTINE AES400.

INPUTS:
KC NORMALIZED CONTROL GAIN MATRIX (NC,N)
KE NORMALIZED KALMAN FILTER GAIN MATRIX (N,NM)
KFF NORMALIZED FEED FORWARD GAIN MATRIX FOR
NON-ZERO SET POINT REGULATOR (NC,NC)
PP NORMALIZED KALMAN FILTER ERROR COVARIANCE
MATRIX (N,N)
NC ACTUAL NUMBER OF CONTROL INPUTS
NM ACTUAL NUMBER OF MEASUREMENTS
N ACTUAL NUMBER OF STATES
NCMAX  MAXIMUM SIZE OF NC
NMAX MAXIMUM SIZE OF N
FL34 LOGICAL VARIABLE, ON INPUT
TRUE, NORMALIZATION VECTOR INFORMATION
{NAMELIST NRMS) HAS ALREADY BEEN READ IN
FALSE, NORMALIZATION VECTOR INFORMATION
(NAMELIST NRMS) NEEDS TO BE READ IN
OUTPUTS:

KC UN-NORMALIZED CONTROL GAIN MATRIX (NC,N)
KE UN-NORMALIZED KALMAN FILTER GAIN MATRIX (N,NM)
KFF UN-NORMALIZED FEED FORWARD GAIN MATRIX FOR
NON-ZERO SET POINT REGULATOR (NC,NC)
PP UN-NORMALIZED KALMAN FILTER ERROR COVARIANCE
MATRIX (N,N)
FL34 LOGICAL VARIABLE, ON OUTPUT SET TO
TRUE IF NORMALIZATION VECTOR INFORMATION
( NAMELIST NRMS) HAS BEEN READ IN
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SUBROUTINE UZR901
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THIS IS FOR A USER-WRITTEN ROUTINE
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SUBROUTINE UZR902
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THIS IS FOR A USER-WRITTEN ROUTINE
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SUBROUTINE UZR903
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THIS IS FOR A USER-WRITTEN ROUTINE
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SUBROUTINE UZR904
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THIS IS FOR A USER-WRITTEN ROUTINE
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SUBROUTINE ZEROES (AA, BB, CC, DD, CONST, ANR, ANI, N, II, JJ, L,
1 Ag, T?, BR, LWV, MWV, ZERMAX, IA, IB, IBL, IC, S, SS, NMAX,
2 NOMAX
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SUBROUTINE ZERQES FINDS THE NUMERATOR ZEROES OF THE TRANSFER
FUNCTION  Y(II) /U(Jd) =CC* ((S*T-A) ** -1) *BB

IT DENOTES DESIRED COMPONENT OF OUTPUT VECTOR

JJ DENOTES DESIRED COMPONENT OF INPUT VECTOR

ZERQES CALLS SUBROUTINES CONDI, EIGQR, HSBG, AND ARRAY. ZEROES IS
CALLED BY SUBROUTINE AES700.

INPUTS:
AA SYSTEM MATRIX (N,N)
88 INPUT MATRIX (N,NUMBER OF POSSIBLE INPUTS)
cC QUTPUT MATRIX (NUMBER OF POSSIBLE QUTPUTS,N)
DD CONSTANT
CONST  ITERATION CONSTANT
N ACTUAL SIZE OF MATRIX AA
11 QUTPUT COMPONENT
Jd INPUT COMPONENT
NMAX MAXIMUM SIZE OF N
NOMAX  MAXIMUM NUMBER OF OUTPUTS
OUTPUTS:

ANR VECTOR OF REAL PARTS OF EIGENVALUES (N)

ANI VECTOR OF IMAGINARY PARTS OF EIGENVALUES (N)

L NUMBER OF ZEROES

ZERMAX MAXIMUM EXPECTED VALUE OF TRANSFER FUNCTION
ZEROES



TEMPORARY STORAGE :

AR MATRIX (N,N

TS MATRIX (NN

BR VECTOR (N)

LWV INTEGER VECTOR &2 X N;
MWV INTEGER VECTOR {2 X N
IA INTEGER VECTOR %2 X N;
18 INTEGER VECTOR (2 X N
IBL INTEGER VECTOR &2 X N;
IC INTEGER VECTOR (2 X N
S MATRIX EN,N;

SS MATRIX (NN
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Appendix C
Test Cases

This appendix presents the results of two test cases. Test case I exercises almost all of the 77
available AESOP functions. Test case II shows how AESOP can be used in an interactive manner to

design a control system.

Test Case I — Third-Order Problem to Demonstrate Full AESOP Program Capabilities

A block diagram of the selected third-order, open-loop plant is shown in figure 14. The plant is
characterized by three states, two controls, one noisy measurement, two plant-noise disturbances,
two outputs, and two set-point variables. The plant is stable with one real pole at 0.1 rad/sec and a
complex pole pair with a natural frequency of 1.0 rad/sec and a damping ratio of 0.001. The com-
putations performed do not all relate to one specific design problem but are done so as to exercise all
of the AESOP functions. For example, frequency responses are computed for a system with perfect
state measurement (X;,X,,X3) and state feedback as well as for Kalman filter feedback using a single
noisy measurement, z;.

The input matrices for test case I are generated by function 201 and are listed in table V. They
include the plant matrices A, B, C, D, CSP, H, and DOUT as weli as quadratic weighting matrices
QC, NN, and PCINYV and noise matrices QQ and RRINV. The test case exercises the AESOP
functions shown in table XI.

Pages 65 to 80 are the terminal printout sheets produced at the user’s terminal. Notes have been
added to indicate what results are being generated and displayed. In the pocket at the rear of this
report are microfiche copies of the output dataset and plots generated for this test case. The output
dataset contains the complete results generated by the AESOP run, including results that were
printed out at the user’s terminal. The CPU time required to run this test case on an IBM 370/3033 is
approximately 30 to 40 seconds depending on which device was used to produce graphic output.

X:
State vector -(x%); control vector = ( :;) ; measurement = z)
X:
3

Plant noise vector -(‘x;); measurement noise = v

OQutput vector =(¥; ); set-point vector .(;:B;)

Figure 14. —Block diagram of third-order system used for test case I.



TABLE XI. — TASKS PERFORMED IN TEST CASE I

Design task performed Page number,
appendix C

Open-Toop analyses 68
Optimal regulator gains and associated error checks 68
Kalman filter gains and associated error checks 70
State covariance matrices and feedforward matrix 72
Frequency responses (and Bode plots) 72
Transient responses (and plots) 74
Transfer function gain and zeros 76
System matrix normalization 77
Repeat of tasks 2 and 3 with normalized matrices 79
Unnormalization of resultant matrices 79

Terminal Printout for Test Case I

AESRUN 1 «———User invokes PROCDEF AESRUN to begin run

CANCELLED: OUT1 UNKNOWN.

OUT1 IS DDEFD TO THE HI-SPEED PRINTER

CGl IS DDEFD TO IO UNIT 8

EGl IS DDEFD TO 10 UNIT 9

PFRUZ1 IS DDEFD TO IO UNIT 10

PFRUY1 IS DDEFD TO IO UNIT 11

PFRWZ1 IS DDEFD TO I0 UNIT 12

PFRWYl IS DDEFD 70 IO UNIT 13

CFR1 IS DDEFD TO IO UNIT 14

PPl IS DDEFD TO IO UNIT 15

$51 IS DDEFD TO 10 UNIT 16

FFGl IS DDEFD TO IO UNIT 17

RUNL IS LIBRARY GRAPHICS

RUN2 IS LIBRARY AESLIB

AESOP <«———— User calls the AESOP program

DO YOU WISH TO MAKE PLOTS, Y OR N?

Y

ENTER THE PLOT NAME - 8 ALPHANUMERIC CHARACTERS

LUCYTEST

DO YOU WISH TO MAKE ONLINE PLOTS, Y OR N?

M

ngEg TgDAY'S DATE (LESS THAN OR EQUAL TO 28 CHARACTERS)
982

§NTER.THE PARAMETER YOU USED FOR AESRUN

EXTENDED TERMINAL OUTPUT?

Y

READ IN N1 FROM STORAGE?

Y

DDEF 21 TO THE N1 DATASET

4—————User requests maximum amount of data to be displayed at terminal

<«——— User elects to have the IFN function number string read in from storage

PROCEEDING: PAUSE . PROGRAM WILL PROCEED IF _RUN COMMAND ISSUED.

DDEF FT21F001,VS,DEC80 «—— {ser datadefs "dec80", the dataset containing the NAMELIST N1 for the
GO test case, to unit 21. "GO" causes program to continue
;E?CEEDING(PCS)= EXECUTION CONTINUES AT CHCRWC.(X'4CD4')

IFN =

101 201 401 402 403 801 802 301 803 804 805 806 807 808 809

810 302 311 303 8l2 813 814 815 816 817 818 819 820 501 502

503 504 505 506 507 5068 509 510 511 512 513 514 515 516 517

518 519 520 521 522 523 524 525 601 602 603 604 701 702 703

704 705 216 4064 801 3061 809 819 405 999 [}

&END

FUNCTION 101 <—————— Function 101 requested to demonstrate procedure for changing
CHANGES TO REFS a "reference" parameter (in NAMELIST 'REFS')

$ISPLAY REFS BEFORE MAKING CHANGES?

&REFS

TSFTR= 1.0

DT= 0.50D-01
FI= 0.10D-01
DELF= 0.20D-01
ZERMAX= 100.0
AMPSP= 5x%1.0
AMPSR= 5%1.0
AMPICX= 50%1.0

IF= 49
ISPACE= 1
I0UT= 1
IMEAS= 1
JINC= 1
JIND= 1
ITRMX= 100
NCURV= 2
LINLOG= 3
MSPY= 250%1
MSPYSP= 25x1
MSPU= 25%1

MSROLY= 250%1
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MSROLX= 250%1
MICCLY= 2500%1
MICCLX= 2500%]1
MICCLU= 250%1
MICOLY= 2500%1
MICOLX= 2500%1

LEND

ENTER CHANGES TO NAMELIST REFS (TSFTR, DT, FI, DELF, ZERMAX, AMPSP, AMPSR,
AMPICX, IF, ISPACE, IQUT, IMEAS, JINC, JIND, ITRMX, NCURV, LINLOG, MSPY,
MSPYSP, MSPU, MSROLY, MSROLX, MICCLY, MICCLX, MICCLU, MICOLY, MICOLX)
&REESFS ZERMAX=500.0D0 &END <4———— Parameter ZERMAX increased from 100 to 500
TSFTR= 1.0

D¥= 0.50D~01

FI= 0.10Db~01

DELF= 08.20D~-01

ZERMAX= 500.0

AMPSP= 5%1.0

AMPSR= 5%1.0

AMPICX= 50%1.6

IF= 49

ITRMX= 100
NCURY= 2
LINLOG= 3
MSPY= 250%1
MSPYSP= 25%1
MSPU= 25%)
MSROLY= 250%1
MSROLX= 250%1
MICCLY= 2500%1
MICCLX= 2500%1
MICCLU= 250%)
MICOLY= 2500%1
MICOLX= 2500%1

SEND
ARE THERE ANYMORE CHANGES, Y OR N7
N

FUNCTION 201
PUT IN THE 3RD ORDER TEST CASE MATRICES BY USING SUBROUTINE MATIN

¥#%%%% INPUT MATRICES »%X¥%% “————— Function that forms all required matrices for rumning the test case
A=

1 2 3
1 -0.1000D 00 1.000 0.0000
2 0.0000 0.0000 1.000
3 0.0000 -1.000 ~0.2000D-02
B=

1 2
1 0.0000 0.0000
2 0.6000 1.000
3 1.000 0.0000
D=

1 2
1  0.0000 0.0000
2 0.0000 1.000
3 1.000 0.0000
C=

1 2 3
1 1.000 0.0000 0.0000
2 6.0000 0.0000 1.000
H=

1 2 3
1 1.000 0.90000 0.0000



DouT=

1
1 0.0000
2 6.0000
cspP=
1
1 1.000
2 0.0008
QC=
1
1 20.00
2 0.0000
3 0.0000
NN=
1
1 1.000
2 0.0000
3 2.000
PCINV=
1
1 1.000
2 0.0000
QQ=
1

3
RRINV=
1
1 1.000
&REFS
TSFTR= 1.0

DT= 0.50D-01
FI= 0.10D-~01
DELF= 0.20D-01
ZERMAX= 508.0
AMPSP= 5%1.0
AMPSR= 5x1.¢
AMPICX= 50%1.0

IF= 649
ISPACE= 1
IouT= 1
IMEAS= 1
JINC= 1
JIND= 1
ITRMX= 100
NCURV= 2
LINLOG= 3
MSPY= 250%1
MSPYSP= 25x]
MSPU= 25x%1

MSROLY= 250%1

MSROLX= 250%1

MICCLY= 2500%1
MICCLX= 2500%1
MICCLU= 250%1

MICOLY= 2500%1
MICOLX= 2500%1
&END

0.0000
l1.000

oo
oo
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FUNCTION 401
OPEN LOOP SYSTEM EIGENVALUES

The following three functions perform analyses on the
open-loop system:

¥%¥% MATRIX IS FOUND TO BE REDUCIBLE ¥

EIGENVALUES
NAT FREQ (HZ) ZETA
0.1592 0.1000D-
0.1592D-01 1.000
FUNCTION 402

02

OPEN LOOP EIGENVECTORS AND MODE SHAPES

MODIFIED EIGENVECTOR MATRIX OF A

1 2 3
1 -1.087 -0.8933 1.000
2 -1.001 0.9990 0.0000
3 1.000 1.000 0.0000

THE MATRIX OF MODE SHAPES IN MAG.

]
"1 N 3
1 0.9951 -176.4 1.000
2 1.0000 -90.06 0.0000
3 1.000 0.0000 ¢.0000
t Magnitudes Phase angl
FUNCTION 403

AND ANGLE(DEG.) FORM

For complex pair at 0.1592 Hz

es, deg

OPEN LOOP SYSTEM ANALYSIS CALCULATIONS

SYSTEM CONTROLABILITY

1 2
1 0.5000
2 0.5730D-01 90.00
3 0.9903 ~0.9705D~01
SYSTEM OBSERVABILITY FOR (A AND H)
1 2 3
1 0.9951 176.4 1.000

SYSTEM OBSERVABILITY FOR (A AND C©)

1 2 3
1 0.9951 174.4 1.000
2 1.000 0.0000 0.0000
RESIDUES FOR (A, B, H) SYSTEM
RESIDUES FOR (A, B, C) SYSTEM

FUNCTION 801
DESIGH A LINEAR QUADRATIC REGULATOR

EIGENVALUES OF REGULATOR OR FILTER
NAT FREQ (HZ) ZETA
0.2382 0.7116
0.4519 1.000
8§58 =
1 2 3
1 19.24 10.42 1.301
2 10.42 9.203 1.819
3 1.301 1.819 1.647
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0.5800% For complex eigenvalue pair

4———— Beginning of Riccati equation solution for LQR problem

IN FN/ZETA FORM



1
1 2.301
2 1.042

FUNCTION &0
STORE OPTIMA

2 3
1.819 3.647
1.220 0.1819

2
L CONTROL GAINS (KC) ON UNIT 03.

FUNCTION 301

FORM A-BKC M

FUNCTION 80
EIGENVALUES

EIGENVALUES

NAT

ATRIX

3
OF SYSTEM WITH STATE FEEDBACK

FREQ (HZ) ZETA
0.2382 6.7116
0.4519 1.000

FUNCTION 804

EIGENVECTORS
MODIFIED EIG

1
1 -0.9899
2 1.000
3 0.2144

THE MATRIX 0O

1
1 0.7006
2 1.000
3 0.7519

AND MODE SHAPES WITH STATE FEEDBACK
ENVECTOR MATRIX OF AMBKC

0.4246D-01 D0.1494
1.000 -0.4092
-1.0642 1.000

F MODE SHAPES IN MAG. AND ANGLE(DEG.) FORM

2 3
-132.5 0.1494
0.0000 -0.4092

123.4 1.000

<«———— Beginning of error checks for the Riccatl solution matrix

FUNCTION 305

POSITIVE DEF

EIGENVALUES

NAT

FUNCTION 80
SYMMETRY CHE

MAX. SYMMETR
AVG. ABSOLUT

SYMMETRY ERR
1
1 0.0000
2 ~0.4475D
3 ~0.3243D

FUNCTION 80
RESIDUAL ERR

MAX. RESIDUA
TRACE OF RE
-0.2977D-13

INITENESS CHECK OF CONTROL RICCATI SQOLUTION MATRIX, S$

FREQ (H2) ZETA

0.1662 -1.000

0.4929 ~1.000} - Negative ¢ indicates that eigenvalues all have positive real parts;
4.133 -1.000 therefore SS is positive-definite

6
CK OF CONTROL RICCATI SOLUTION MATRIX, SS

Y ERROR IN S5 = =3.2629E-15
E SYMMETRY ERROR IN SS = 1.7184E-15
OR IN S5 =

9.0000
-15 0.0000
-164 -0.1465

7
OR CHECK OF SS

t, RC 1, 2)= ~0.2842D-13
SIDUAL =
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RESIDUAL ERROR MATRIX FOR CONTROL RICCATI EQUATION

1 -0.1421D-13 -0.2842D-13 -0.1577D-13 The residual remaining upon substitution of solution

2 -0.1754D-13 -0.1622D-13 -0.8438D-14¢
5 -0.8882D-15 0.4441D-15 0.6661D-15 matrix S8 back into the original Riccati equation

FUNCTION 308
STORE CONTROL RICCATI SOLUTION MATRIX (SS) ON UNIT 16

4———— Beginning of Riccati equation solution for Kalman filter problem

FUNCTION 809
DESIGN A KALMAN FILTER

EIGENVALUES OF REGULATOR OR FILTER IN FN/ZETA FORM
NAT FREQ (H2) ZETA

0.2202 1.000
02862 b.4451
PP =
1 2 3
1 2.882 4.442 1.482
2 4.442 11,76 8.865
3 1.482 8.865 18.37
KE =
1
1 2.882
2 4.462
3 1l482

FUNCTION 810
STORE KALMAN FILTER GAINS (KE) ON UNIT 09

FUNCTION 302
FORM A-BKC-KEH MATRIX

FUNCTION 2811
EIGENVALUES OF OPTIMAL CONTROLLER A-BKC-KEH

EIGENVALUES
NAT FREQ (HZ) ZETA
0.6057 1.000
0.5366 0.6000

FUNCTION 303
FORM ATOT, CTOT, DTOT, KCTOT, AND HTOT MATRICES
FOR OPTIMAL CONTROL SYSTEM WITH KALMAN FILTER IN FEEDBACK LOOP

ATOT =

1 2 3 4 5 6
1 -0.1000D 00 1.000 0.0000 0.0600 0.0000 0.0000
2 0.0000 0.0000 1.000 ~1.0642 ~1.220 ~0.1819
3 0.0000 ~1.0080 -0.2000D-02 -2.301 -1.819 -3.647
4 2.882 0.0000 0.0000 -2.982 1.000 0.0000
5 %4.462 8.0000 0.0000 -5.484 ~1.220 © 0.8181
6 1.482 0.0000 0.0000 -3.783 -2.819 ~3.649
CTOT =

1 2 3 4 5 6
1 1.000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.00090 0.0000 1.000 -1.0642 -1.220 -0.1819
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DTOT =

1 2
1 0.0000 0.0000
2 0.0000 1.000
3 1.000 0.0000
4 0.0000 0.0000
5 0.0000 0.0000
6 6.0000 0.0000
KCTOT @
1 2 3 4 5 6
1 0.0000 0.0000 0.0000 =-2.301 -1.319 ~3.647
2 0.0000 0.0000 0.0000 -1.0642 -1.220 ~0.13819
HTOT =
1 2 3 4 5 6
1 1.000 0.0000 0.0000 0.0000 0.0000 0.0000

FUNCTION 812
EIGENVALUES OF CONTROL SYSTEM WITH A FILTER IN THE FEEDBACK LOOP

EIGENVALUES
NAT FREQ (HZ) ZETA
0.2202 1.800 - B
0.2382 0 7116 These are the eigenvalues of A - KE * H
gﬁg‘{% 01{'33; These are the eigenvalues of A - B -« KC

FUNCTION 3813
POSITIVE DEFINITENESS CHECK OF ERROR COVARIANCE MATRIX, PP

EIGENVALUES
NAT FREQ (H2) ZETA
0.1103 -1.000
1.138 -1.000 ——— Matrix PP is positive-definite
4.006 ~1.000

FUNCTION 814 -
SYMMETRY CHECK OF ERROR COVARIANCE MATRIX, PP

MAX. SYMMETRY ERROR IN PP = =-2.9%962E-16
AVG. ABSOLUTE SYMMETRY ERROR IN PP = 1.6667E-16
SYMMETRY ERROR IN PP =

1 2 3
1 0.0000 0.0000 6.0009
2 0.9000 0.0000 0.0000
3 -0.2996D-15 0.2004D-15 0.0000

FUNCTION 815
RESIDUAL ERROR CHECK OF PP

MAX. RESIDUAL, RC 2, 2)= -0.1155D-13
TRACE OF RESIDUAL =
=0.2265D-13
RESIDUAL ERROR MATRIX FOR ESTIMATION RICCATI EQUATION

1 2 3

1 -0.4441D-15 -0.3775D-14 -0.5953D-14
2 =-0.4219D-14 -0.1155D-13 -0.1066D-13
3 ~0.2849D-14 ~0.1087D-13 -0.1066D-13

<“———— Beginning of error checks on Kalman filter error covariance matrix
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FUNCTION 816
STORE ERROR COVARIANCE MATRIX (PP) ON UNIT 15

FUNCTION 817
COMPUTE COVARIANCE MATRICES FOR LINEAR QUADRATIC REGULATOR

WITH KALMAN FILTER IN FEEDBACK LOOP

3696 3 6 36 36 3 3 3 I I I I I I I 3¢ I I I I I I I 3 3 3 I I IE I I I I I I I I I I I I XK XK N 3 X MK

COVARIANCE MATRICES
363036 36 6 6 36 36 636 36 36 36 36 I I I 26K 3 H 3 3 3 2 3 36 36 36 36 X 2 6 HE I3 X 96 392 3 H % X% %

UU, CONTROL COVARIANCE MATRIX

1 41.642 20.81
2 20.81 25.13

XX, STATE COVARIANCE MATRIX

1 2 3
1 20.99 2.099 -6.849
2 2.099 21.56 8.428
3 -6.849 8.428 26.26

YY, OUTPUT COVARIANCE MATRIX

1 20.99 -21.35
2 -21.35 65.67

2Z, MEASUREMENT COVARIANCE MATRIX

1 20.99

FUNCTION 818
LYAPUNGV ERROR CHECK FOR FUNCTION 817 -——— Computes error incurred in calculating state covariance matrix XX

THE TRACE OF THE RESIDUAL= 0.65148D-12

NORMALIZED DIAGONAL ELEMENTS OF THE ERROR MATRIX =
-0.64970D-15 0.63051D-15-0.40617D-14

THE TRACE OF THE ERROR=-0.98575D-13

THE TRACE OF THE COVARIANCE= 66.806
TRCERROR)/TR(COV.) =-0.14755D-14

FUNCTION 819
FORM FEED FORWARD MATRIX FOR NON-ZERO SET POINT CONTROL
KFF =

1 2
1 2.583% 1.824
2 1.164 -0.4090

FUNCTION 820
STORE FEED FORWARD MATRIX (KFF) ON UNIT 17

<+———— Beginning of frequency response and Bode plot computation

FUNCTION 501
OPEN LOOP FREQUENCY RESPONSE OF MEASUREMENT 1 TO CONTROL INPUT 1

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 xSxx 3 1.0000 xo5NX 3
=0.12089D-16%S%% 2 0.10200 ®Sx¥ 2
.00000 x5%x 1 1.0002 ®5%% 1
1.0000 xSx¥ 0 0.10000D 00%S%% O
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1l " 1 n momi o

FUNCTION 502
PLOT OPEN LOOP FREQ. RESPONSE OF MEASUREMENT TO CONTROL INPUT

GRAPHICS DEVICE NOT DEFINED BY DDEF.
ENTER UNIT NAME. DEFAULT TO CANCEL.

ZETAl2 S [Jger specifies ZETA plotter to be used for plotting
PLOT IDENTIFICATION = PELUCYXX 02 DEC 1932 2 08:06:18

FUNCTION 503
STORE OPEN LOOP FREQ. RESPONSE OF MEASUREMENT TQ CONTROL INPUT ON UNIT 10

FUNCTION 504
OPEN LOOP FREQUENCY RESPONSE OF OUTPUT 1 TO CONTROL INPUT 1

HUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 (3323 1.0000 XSxx% 3
-0.12089D~-16%S5%x%
0.00000 HS ¥R
1.0000 ®S XX

0.10200 XSX% 2
-0 *S5%x% 1
0 10000D OOXSXX 0

QN W
o
o
N

FUNCTION 505
PLOT OPEN LOOP FREQ. RESPONSE OF QUTPUT TO CONTROL INPUT

FUNCTION 506
STORE OPEN LOOP FREQ. RESPONSE OF QUTPUT TO CONTROL INPUT ON UNIT 11

FUNCTION 507
OPEN LOOP FREQUENCY RESPONSE OF MEASUREMENT 1 TO DISTURBANCE INPUT 1

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 XS5 % 3 1.0000 3
-0.12089D- 16*5** 2 0.10200 *S** 2
0.00000 L33.7 T 0002 ®5xx 1
1.0000 x5xx 0 0 10000D 00XSXx 0

FUNCTION 508
PLOT OPEN LOOP FREQ. RESPONSE OF MEASUREMENT TO DISTURBANCE INPUT

FUNCTION 509
STORE OPEN LOQP FREQ. RESPONSE OF MEASUREMENT TO DISTURBANCE INPUT ON UNIT 12

FUNCTION 510
OPEN LOOP FREQUENCY RESPONSE OF OUTPUT 1 TO DISTURBANCE INPUT 1

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 ®S¥% 3 1.0000 ®Su¥ 3
-0.12089D-16X%S%%x 2 0.10200 X5%% 2
0.00000 ®S%% 1 1.0002 #S¥x 1
1.0000 x5%x 0 0.10000D 00%Sxx% 0

FUNCTION 511
PLOT OPEN LOOP FREQ. RESPONSE OF OUTPUT TO DISTURBANCE INPUT

FUNCTION 512
STORE OPEN LOOP FREQ. RESPONSE OF OUTPUT TO DISTURBANCE INPUT ON UNIT 13

FUNCTION 513
CLOSED LOOP FREQUENCY RESPONSE OF OUTPUT 1 TO DISTURBANCE INPUT 1
FOR STATE FEEDBACK

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 S % x 1.0000 x5x 3
~0.22204D-15%5%x 4.9693 *5** 2
-0.22204D-15%5%x 3.2382 xgxx 1
0.81810 G 6.3604 xSxx 0

O r N

FUNCTION 514

PLOT CLOSED LOOP FREQ. RESPONSE OF QUTPUT TO DISTURBANCE INPUT
FOR STATE FEEDBACK

(PLUS THE CORRESPONDING OPEN LOOP RESPONSE, IF DESIRED)

FUNCTION 515
CLOSED LOOP FREQUENCY RESPONSE OF CONTROL 1 TO DISTURBANCE INPUT 1
FOR STATE FEEDBACK

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 xS5%x 3 1.0000 ®S5¥ux 3
-3.6470 x5xx 2 4.9693 ®S5¥x 2
=-6.3034 nSx% 1 8.2882 ®G5ux 1
-6.2763 x5x% 0 6.3604 ®S5x% 0
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FUNCTION 516
PLOT CLOSED LOOP FREQ. RESPONSE OF CONTRO!I TO DISTURBANCE INPUT

FOR STATE FEEDBACK

FUNCTION 517
CLOSED LOOP FREQUENCY RESPONSE OF MEASUREMENT 1 TO DISTURBANCE INPUT 1

FOR CONTROL SYSTEM WITH A FILTER IN THE FEEDBACK LOOP

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 XS % 1.0000 G %%
7.953¢6 S XK

0.00000 % ¥
0.00000 %5 %% 28.566 X5 %%
62.639 XS X%

1.0000 KSR K
7.8516 %S %% 86.362 %G %%
71.725 HSH K

26.764 %S %
43.263 5% 28.452 *S X%

- UL
O NUPL U

FUNCTION 518

PLOT CLOSED LOOP FREQ. RESPONSE OF MEASUREMENT TO DISTURBANCE INPUT
FOR CONTROL SYSTEM WITH FILTER IN FEEDBACK LOOP

(PLUS THE CORRESPONDING OPEN LOOP RESPONSE, IF DESIRED)

FUNCTION 519
CLOSED LOOP FREQUENCY RESPONSE OF OQUTPUT 1 TGO DISTUgBANCE INPUT 1

FOR CONTROL SYSTEM WITH A FILTER IN THE FEEDBACK L0O

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 G M3 1.0000 *5 %%
0.00000 *S X x
0.00000 ¥ %%
1.0000 *S %
7.8516 *G %
26.764% *5 %%
43.263 *S X%

7.9536 %5 % %
28.566 %5 %
62.639 K5 ¥
86.362 *G% %
71.725 *G %X
28.452 *S KK

OHMNWSNO
oHNUWAUI

FUNCTION 520

PLOT CLOSED LOOP FREQ. RESPONSE OF OUTPUT TO DISTURBANCE INPUT
FOR CONTROL SYSTEM WITH FILTER IN FEEDBACK LOOP

(PLUS THE CORRESPONDING OPEN LOOP RESPONSE, IF DESIRED)

FUNCTION 521
CLOSED LOOP FREQUENCY RESPONSE OF CONTROL 1 TO DISTURBANCE INPUT 1
FOR CONTROL SYSTEM WITH A FILTER IN THE FEEDBACK LOOP

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
6.80000 >SH¥ 6 1.0000 XS5 xx
-0.44409D-15%5%x% 7.9536 XGxx
-0.13323D-14%5%% 28.566 G %
~0.39968D-16%5%x% 62.639 *S5%%
-20.117 *G %% 86.362 ¥G ¥
-6.8315 G X x 71.725 %5 X %
-24%.088 S X% 28.452 xS %%

OHNWPN
OrHNWIU

FUNCTION 522
PLOT CLOSED LOOP FREQ. RESPONSE OF CONTROL TO DISTURBANCE INPUT
FOR CONTROL SYSTEM WITH FILTER IN FEEDBACK LOOP

FUNCTION 523
FREQUENCY RESPONSE OF CONTROL 1 TG MEASUREMENT 1

FOR OPTIMAL CONTROLLER

NUMERATOR COEFFICIENTS DENOMINATOR COEFFICIENTS
0.00000 ®S5%¥% 3 1.0000 ®5xx 3

-20.117 ®S5A% 2 7.8516 xS%% 2
-6.8315 ®Sxx 1 26.764% ®5xx 1
-24.038 XSx% 0 43.263 XSxx 0

FUNCTION 524
PLOT FREQ. RESPONSE OF CONTROL TO MEASUREMENT
FOR OPTIMAL CONTROLLER

FUNCTION 525
STORE FREQ. RESPONSE OF CONTROL TO MEASUREMENT '
FOR OPTIMAL CONTROLLER ON UNIT 14
-«—— Beginning of transieant respomse calculations and plots

FUNCTION 601
OBTAIN AND PLOY SELECTED OPEN LOOP STEP RESPONSES

STATE TRANSITION MATRIX FOR OPEN LOOP SYSTEM FOR TIME STEP =0.5000D-01
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0.4985D-01 0.1248D-02
.9988 0.4998D-01
~0.4998D-01 0.9987

(2NN

FORCED RESPONSE MATRIX OF OPEN LOOP SYSTEM FOR TIME STEP =0.5000D-01

1 2 3
1 0.4983D-01 0.1243D-02 0.2080D-04
2 0.0000 0.4998D-01 0.1250D-02
3 0.0000 -0.1250D-02 0.4998D-01

FUNCTION 602
OBTAIN AND PLOT SELECTED INITIAL CONDITION RESPONSES FOR THE OPEN LOOP SYSTEM

STATE TRANSITION MATRIX FOR OPEN LOOP SYSTEM FOR TIME STEP =0.5000D-01

1 2 3
1 0.995¢0 0.4985D-01 0.1248D-02
2 0.q0400 0.9988 0.4998D-01
3 0.0000 -0.4998D-01 0.9987

FORCED RESPONSE MATRIX OF OPEN LOOP SYSTEM FOR TIME STEP =0.5000D-01

0.4988D-01 0.1248D-02 0.2030D-04
0.0000 0.4998D-01 0.1250D-02
0.0000 =0.1250D-02 0.4998D-01

W -

FUNCTION 603
OBTAIN AND PLOT SELECTED INITIAL CONDITION RESPONSES
FOR THE CLOSED LOOP LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR REGULATOR FOR TIME STEP 0.5000D-01

1 2 3
1 0.9937 0.64832D-01 0.9413D-03
2 =-0.5251D-01 0.9369 0.3619D-01
3 -0.1014 -0.1273 0.8307

FORCED RESPONSE MATRIX OF LINEAR REGULATOR FOR TIME STEP 0.5000D-01
1 2 3

1 0.4985D-01 0.1222D-02 0.1602D-04
2 -0.1310D-02 0.4864D-01 0.9429D-03
3 -0.2645D-02 -0.3294D-02 0.4566D-01

FUNCTION 604
OBTAIN AND PLOT SELECTED STEP RESPONSES
FOR THE NON-ZERO SET POINT LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR REGULATOR FOR TIME STEP 0.5000D-01

1 2 3
1 0.9937 0.4832D-01 0.9413D-03
2 -0.5251D-01 0.9369 0.3619D-01
3 -0.1014 -0.1273 0.8307

FORCED RESPONSE MATRIX OF LINEAR REGULATOR FOR TIME STEP 0.5000D-01

1 2 3

1 0.4985D-01 0.1222D-02 0.1602D-04
2 =-0.1310D-02 0.4844D-01 0.9429D-03
3 =-0.2645D-02 -0.3294D-02 0.4566D-01



«——— Beginning of transfer function gain and numerator zeros calculation

FUNCTION 701

GAIN AND ZEROES OF OPEN LOOP TRANSFER FUNCTION
RELATING MEASUREMENT 1 TO CONTROL INPUT 1
GAIN = 1.00000

NUMBER OF ZEROES = 0
REAL PARTS OF NUMERATOR ZEROES

1 0.0000

IMAGINARY PARTS OF NUMERATOR ZEROES

1 0.0000

FUNCTION 702
GAIN AND ZEROES OF OPEN LOOP TRANSFER FUNCTION
RELATING OUTPUT 1 TO CONTROL INPUT 1

GAIN = 1.00000

NUMBER OF ZERODES = 0
REAL PARTS OF NUMERATOR ZEROES

1 6.0000

IMAGINARY PARTS OF NUMERATOR ZERODES

1 0.0000

FUNCTION 703

GAIN AND ZERGES OF OPEN LOOP TRANSFER FUNCTION
RELATING MEASUREMENT 1 TO DISTURBANCE INPUT 1
GAIN = 1.00000

NUMBER OF ZEROES = 0
REAL PARTS OF NUMERATOR ZERODES

1 0.0000

IMAGINARY PARTS OF NUMERATOR ZEROES

1 0.0000

FUNCTION 706
GAIN AND ZEROES OF OPEN LOOP TRANSFER FUNCTION
RELATING OUTPUT 1 TO DISTURBANCE INPUT 1

GAIN = 1.00000
NUMBER OF ZEROES = 0
REAL PARTS OF NUMERATOR ZEROES

1 0.0000

IMAGINARY PARTS OF NUMERATOR ZERDES

1 ¢6.o0000
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FUNCTION 705
GAIN AND ZEROES OF OPTIMAL CDNTROLLER TRANSFER FUNCTION
RELATING CONTROL 1 TO MEASUREMENT

GAIN = 20.1170
NUMBER OF ZEROES = 2
REAL PARTS OF NUMERATOR ZEROES

1
1 -0.1699
2 -0.1699

IMAGINARY PARTS OF NUMERATOR ZEROES

1
1 1.081
2 -1.081

Beginning of series of functions that demonstrate (1) normalizing of Input matrices,
(2) normalizing of control weighting matrices, (3) recomputing of KC, KE, and KFF
matrices, and (4) unnormalizing KC, KE, KFF, and PP to show that results are

FUNCTION 210 identical to prior calculations

CHANGE MATRICES A, B, C, D, H, DOUT, CSP, QC, NN, PCINV, QQ, OR RRINV AND ANY
OR ALL DIMENSIONS BY READING CHANGES IN AT TERMINAL USING NAMELIST 'MATDAT'
DISPLAY MATDAT BEFORE MAKING CHANGES?

Y

&MATDAT

A= -0.10D0, 49%0.0, 1.0, 0.0, -1.0, 48%0.0, 1.0, -0.20D-02, 2397%0.0
B= 2%0.0, 1.0, 48%0.0, 1.0, 198%0.0

c= 1.0, 100%0.0, 1.0, 2393%0.0

D= 2%0.0, 1.0, 48%0.0, 1.0, 698%0.0

H= 1.0, 249%0.0

DOUT= 51x%0.0, 1.0, 198%0.0

csP= 1.0, 10%0.0, 2.0, 238%0.0

QC= 20.0, 50%0.0, 1.0, 50%0.0, 10.0, 2397x%0.0
NN= 1.0, 0.0, 2.0, 48%0.0, 3.0, 198%0.0

PCINV= 1.0, 5%0.0, 0.10D0, 18%C.0
QQ= 51%0.0, 2.0, 50%0.0, 20.0, 2397x0.0
RRINV= 1.0, 24%0.0
N= 3
NM= 1
NC= 2
ND= 2
NO= 2
LEND
ENTER MATDAT CHANGES AS &MATDAT A(1,1)= , ETC. &END
&MATDAT
gg§§:§§ = 3"3;‘,3”“ *—— New values for weighting elements calculated off-line so
gg%a\-]ﬁ ;)40 llngGZSD - that they correspond to normalized versions of those
,
PCINV(2,2) = 1.2345679D-3 stored above as MATDAT
NN(1,1) = 40.0D0
NN(3,1) = 32.0D0
NH(2,2) = 81.0D0
LEND
&MATDAT

A= -0.10D0, 49%6.0, 1.0, 0.0, -1.0, 48%0.0, 1.0, -0.20D-02, 2397%0.0
B= 2%0.0, 1.0, 48%0.0, 1.0, 198x%0.0
= 1.0, 100%0.0, 1.0, 2398%0.0
D= 2%0.0, 1.0, 48%0.0, 1.0, 638%0.0
H= 1.0, 249%0.0
DOUT= 51%0.0, 1.0, 198%0.0
c5P= 1.0, 10%0.0, 2.0, 233%0.0
QC= 500.0, 50%0.0, 9.0, 50%0.0, 40.0, 2397%0.0
NN= 40.0, 0.0, 32.0, 43%0.0, 831.0, 193%0.0
PCINV= 0.156250D-01, 5%0.0, 0.123456790D-02, 138%0.0
QQ= 51%0.0, 2.0, 50%0.0, 20.0, 2397x0.0
RRINV= 1.0, 24%0.0
N= 3
NM= 1
RC= 2
ND= 2
RO= 2

$END
ARE THERE ANYMORE CHANGES, Y OR N?
N

FUNCTION 404
NORMALIZE SYSTEM MATRICES;
NORMALIZING FACTORS ARE READ IN FROM UNIT 34 IF NOT PREVIOUSLY SET

IF NOT ALREADY DONE, DDEF DATASET CONTAINING NAMELIST 'HRMS' TO UNIT 34
PROCEEDING: PAUSE . PROGRAM WILL PROCEED IF _RUN COMMAND ISSUED.

DDEF FT34F001,VS, ANRMS

G0

PROCEEDING(PCS): EXECUTION CONTINUES AT CHCRWC.(X'4CD4*)
NORMALIZING FACTORS ARE

ENRMS

SCX= 5.0, 3.0, 2.0, 47%0.0
SCU= 8.0, 9.0, 3%0.0
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SCY= 4.0, 7.
SCZ= 6.0, 4x
SCYSP= 12.0,
&END

0, 10.0, 47%0.0
0.0
11.0, 3%0.0

NORMALIZED SYSTEM MATRICES
THE A MATRIX IS

1 2 3
1 -0.1000D 00 0.6000 6.0000
2 0.0000 0.0000 0.6667
3 0.0000 ~1.500 -0.2000D-02

THE B MATRIX IS

1 2
1 0.0000 0.0000
2 0.0000 3.000
3 4.000 0.0000

THE € MATRIX IS

1 2 3
1 1.250 0.0000 0.0000
2 0.0000 0.0000 0.2357

THE H MATRIX IS

1 0.8333 0.0000 0.0000

THE QQ MATRIX IS

1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.2222 g.0008
3 0.0000 0.0000 5.000

THE RRINV MATRIX IS

1 36.00

THE D MATRIX IS

1 2
1 0.0000 0.0000
2 0.0000 0.3333
3 6.5000 0.0000

THE DOUT MATRIX IS

1 2
1 6.0000 0.0000
2 g.g000 1.286

THE CSP MATRIX IS

FUNCTION 801
DESIGN A LINEAR QUADRATIC REGULATOR
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EIGENVALUES OF REGULATOR OR FILTER IN FN/ZETA FORM

AT FREQ (HZ) 2ZETA
0.2382 0-7116} <———— Note that LQR eigenvalues are not changed by process of
55 = 0.4519 1.000 normalization (QC, NN, and PCINV were also normalized)
1 2 3
1 481.1 156.3 13.01
2 156.3 82.83 10.91
3 13.01 10.91 6.588
KC =
1 2 3
1 1.438 0.6821 0.9117
2 0.5789 0.4068 0.4042D-01

FUNCTION 301
FORM A-BKC MATRIX

FUNCTION 3809
DESIGN A KALMAN FILTER

EIGENVALUES OF REGULATOR OR FILTER IN FN/ZETA FORM

NAT FREQ (HZ) ZETA
ggggg 014222} <«—— Same Kalman filter eigenvalues as obtained previously
PP =
1 2 3
1 0.1153 0.2961 0.16482
2 0.2961 1.307 1.477
3 0.1482 1.477 4.591
KE =
1
1 3.459
2 3.884
3 4.646

FUNCTION 819
FORM FEED FORWARD MATRIX FOR NON-ZERQO SET POINT CONTROL

KFF =

1 2
1 3.874 2.509
2 1.552 -6.4999

FUNCTION 405
UNNORMALIZE GAINS AND ERROR COVARIANCE MATRIX;
MORMALIZING FACTORS ARE READ IN FROM UNIT 34 IF NOT PREVIOUSLY SET

NORMALIZING FACTORS
LNRMS

$CX= 5.0, 3.0, 2.0, 47%0.0
SCu= 8.0, 9.0, 3%0.0

SCy= 4.6, 7.0, 10.0, 47%0.0
SCZ= 6.0, 4%0.0

SCYSP= 12.6, 11.0, 3%0.0
LEND

@ Check shows that the following matrices are identical to those previously computed:
UNNORMALIZED SYSTEM MATRICES
THE KC MATRIX IS
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1 2 3

1 2.301 1.819 3.647
2 1.042 1.22¢0 0.1819

THE KE MATRIX IS

1

1 2.882
2 4.442
3 1.482

THE KFF MATRIX IS

1 2
1 2.583 1.824
2 1.164 -0.4090

THE PP MATRIX IS

1 2 3
1 2.882 4.462 1.482
2 4.442 11.76 8.865
3 1.482 8.865 18.37

STORE THE N1 FOR THIS RUN? o If new function number string has been formed, it could have been stored

TERMINATED: STOP RETURN at this point for future use

PRINY OUT1,PRTSP=EDIT o User requests output dataset (OUT1 in this case) to be printed out
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Test Case II — Interactive Design of a Nonzero-Set-Point Regulator

Test case II demonstrates how AESOP can be used in an interactive manner to design a feedback
control system. The same third-order state-variable system model used in test case I is considered,
except that the outputs of primary interest are now the set-point outputs yg,. They are selected to be
Ysp1 =X1 and yg,> =x3 by proper definition of matrix CSP. The following assumptions are made:

(1) All three states are measurable.

(2) Both disturbance w and measurement noise v are zero.

The design problem is to compute feedforward (KFF) and feedback (KC) gain matrices such that the
resulting closed-loop system meets the following design criteria:

(1) Each of the two set-point outputs follows a step in its corresponding set point with zero steady-
state error. (This is insured by the nonzero-set-point regulator structure.)

(2) Set-point output step reponses are well damped (less than 10 percent overshoot) and settle out
in less than 5 seconds.

(3) For a unit step on either set point, excursions of the two control variables must be such that

Jwy/<5 and fuj<5.
The resulting closed-loop system is shown in figure 15. Basically, the design procedure followed is to
vary performance index weights in an interactive fashion, displaying the step responses of ys, and
¥sp2 for each candidate design and repeating the process until acceptable transient responses are
observed. Once transient performance is considered acceptable (criteria 1 and 2 are satisfied), the
control variable responses are displayed to check that criterion 3 is also met.

The input data that define the problem are stored in dataset TEST.CASE2, which is shown in
figure 16. Note that the values of some of the reference parameters in NAMELIST REFS have been
made different from the default values so as to obtain the desired output variable selection and time
step for the step responses. Also, unlike test case I the initial values of weighting matrices QC and NN
are allowed to be zero, and PCINYV is set equal to a 2 X 2 identity matrix.

To begin the design process the AESOP program is initiated as was done in test case I. When the
program prompts the user with the message READ IN N1 FROM STORAGE?, the user replies ““N.”’
The program then prompts the user to enter function numbers from the terminal



—-KC

Yspdl + g

¥spd2

X1 = ¥spl

¥sp2

0488900 &MATDAT

0489000 N=3,NC=2,NM=1,N0=2,ND=2,

8489100 AC1,1)=-0.1,0.,0.,AC1,2)=1.,0.,-1.,A(1,3)=0.,1.,-.2D-2,

0489200 B(3,1)=1.,B(2,2)=1.,D(3,1)=1.,D(2,2)=1.,C(1,1)<L.,

0489300 c(2,3)=1.,H(1,1)=1.,D0OUT(2,2)=1.,CSP(1,1)=1.,C5P(2,3)=1.,
0489400 PCINV(1,1)=1.,PCINV(2,2)=1.,QQ(2,2)=2.,QQ(3,3)=20.,RRINV(1,1)=1.

0489500 &END

0489600 &REFS

0489700 DT=.24,

0489800 MSPY=250%0,MSPYSP=25%0,MSPU=25%0,MSPYSP(1,1)=1,MSPYSP(2,2)=]1
0489900 &END

Figure 16. — Data for test case II, contained in dataset TEST.CASE2.

ENTER NAMELIST DATA AS ‘&N1 IFN=, , , &END
and the user responds with
&nl ifn =202,203,801 &end

The user then datadefs dataset TEST.CASE2 to unit 33.

FUNCTION 202
READ INPUT DATA -- MATRICES AND REFERENCE VALUES DEFINED
IN NAMELICTS ‘MATDAT‘ AND ‘REFG”

IF NOT ALREADY DONE, DDEF DATASET CONTAINING NAMELISTS
‘MATDAT’ AND ‘REFS’ TO UNIT 33

CHCRWA10 PROCEEDING! FAUSE

ddef ft33f001rvsstest.case2

g0

CZAPBO30 PROCEEDING(PCS): EXECUTION CONTINUES AT CHCRMWC.(X’4CD4")
DISPLAY INPUT MATRICES?

n

The next requested function (203) allows the user to enter desired performance index weights. For
this test case, weights on the two controls will be fixed at unity and the weight on state 1 will be
varied. A low value (0.001) is selected initially, and the program proceeds to compute an LQR
solution.

FUNCTION 203

DISFLAY CONPAR BEFORE MAKING CHANGES?
Y

LCONPAR

Qc= 2500%0.0

NN= 250%0.0
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PCINV= 1,0y S%0.0» 1.0 18%0.0
$END

ENTER CONTROL WTS QCs NN AND/OR PCINV (NAMEL1ST CONFAR)
gconrar ac(ly1) = 0,001 Zend
LCONPAR

QC= 0.,10D0-02, 2499%0.0

NN= 250%0.0

FPCINV= 1,0y 5%0.0y 1.0y 18%0,0

LEND

ARE THERE ANYMORE CHANGESs Y OR N7

n

FUNCTION 801
DESIGN A LINEAR QUADRATIC REGULATOR

EIGENVALUES OF REGULATOR OR FILYER IN FN/ZETA FODRM

NAT FRERQ (HZ) ZETA
0,1667D-01 1.000
0.1593 0.,22230-01
S8 =
1 2 3
1 0.48830-02 0.,61550-03 0.48060-02
2 0.61550~03 0.2122D-01 0.3%020-03
3 0.48060-02 0.3902D-03 0.26010-01
KC =
1 2 3
1 0.,48060-02 0.39020~-03 0.2601D0-01
2 0.6155D-03 0,21220-01 0.,3%02D0-03
FUNCTION 0

TD COMPUTE FURTHERs ENTER NEXT FUNCTION NOS.(I%)s UNE FER LINE
TO TERMINATE ENTER 999 (LAST ENTRY MUST BE A RETURN)

301

819

604

The user then requests that step responses be plotted for a nonzero-set-point regulator. This
requires, as prerequisites, forming of A —B-KC and calculation of feedforward gain matrix KFF.

FUNCTION 301
FORM A-ERC MATRIX

FUNCTION 819
FORM FEED FORWARD MATRIX FOR NON-ZERO SET POLNT CONTROL

KFF =

1 0.1048 0.28010-01
2 0.27370-02 -0.,9996
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FUNCTION 604
OBTAIN AND FLOT SELECTED STEF RESFONGES
FOR THE NON-ZERO SET FOINT LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR REGULATOR FOR TIME STEP 0.2400

1 2 3
1 0.9763 0.2343 0.,2831D0-01
2 ~-0.,2802D0-03 0.9664 0.2362
3 -0.1108D-02 -0.2365 0.7648

FORCED RESFONSE MATRIX OF LINEAR REGULATOR FOR TIME STEF 0.2400

1 2 3
1 0.2371 0,2839D0-01 0,22760-02
2 -0,28410-04 0.2371 0.,28540-01

3 -0.1349D-03 -0.2857D-01 0.2349

Next, before plots can be obtained, the user must indicate on which device the plots are to be

generated by entering the user’s terminal number (LAO0O1), indicating that plots are to be displayed
not on an off-line device but at the user’s terminal.

GRINT100 GRAPHICS DEVICE NOT DEFINED BY DIEF.
ENTER UNIT NAME. DEFAULT TO CANCEL.
la011

Two plots are then displayed: one for the response of y;p1 to a step in ygpq1, and the other for ygpyto a
step in yspda-

83



YSP

STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUTZ SET POINT COMMAND YSPD ( 1 )
AMPLITUDE = 1.00
DEC 7o 1982
RUN NO. 3

Y Y T I T N B B

2.5 5.0 7705 10.0 12.5 15.0 17.5 20.0 22.3 25.0

TIME



YSP

STEP RESPONSES FCR NDN-ZERO SET-POINT REG.
INPUT: SET POINT COMMAND YSPD 4 2 )
AMPLITUDE = 1.00
DEC 7 1982
2.0 p— RUN NO. 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME
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With this low weighting on x;, the system responses are obviously not acceptable, a fact also
discernible from an examination of the closed-loop eigenvalues displayed by function 801. Thus the
user requests another design iteration.

FUNCTION 0
TO0 COMPUTE FURTHER» ENTER NEXT FUNCTION NOS.(I3)s ONE PER LINE

TO TERMINATE ENTER 999(LAST ENTRY MUST BE A RETURN)
203
801
301
819
604

This time, the weight on x; is increased to 1.0, and the LQR and feedforward gains are
recomputed.

FUNCTION 203
DISFLAY CONFAR BEFORE MAKING CHANGES?

n
ENTER CONTROL WTS QC» NN AND/OR FCINV (NAMELIST CONFAR)

gconrar aqc(ls1) = 10, Zem#
&conrar ac(ls1) = 10,0 Zend
&CONFAR

QRC= 10.0y 2499%0.0

NN= 250%0.0

PCINV= 1,0+ 5%0.0» 1.0+ 18%0.0
REND

ARE THERE AMYMORE CHANGES, Y OR N7
n

FUNCTION 801
DESIGN A LINEAR QUADRATIC REGULATOR

EIGENVALUES OF REGULATOR OR FILTER IN FN/ZETA FORM

NAT FREQ (HZ) ZETA
0.,1392 1.000
0,3027 0.5564
§S =
1 2 3
1 7206 2,783 0.9032
2 2,783 1,950 0.6620
3 0.9032 0.6620 0.9392
KC =
1 2 3
1 0.9032 0,6620 0.,9392
2 2.783 1,950 0.6620

FUNCTION 301
FORM A-BKC MATRIX

FUNCTION 819
FORM FEED FORWARD MATRIX FOR NON~ZERO SET POINT CONTROL
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KFF =

1 2
1,069 0.9412
2.978 -0.3380

FUNCTION 604

OBTAIN

AND FLOT SELECTED' STEF RESFONSES

FOR THE NON-ZERD SET FOINT LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR REGULATOR FOR TIME STEF 0.2400

1 2 3
1 0.9089 0.1832 0.,753710-02
2 -0.,5167 0.5573 0,55550-01
3 -0.8230D-01 -0.2934 0.,7855
FORCED RESPONSE MATRIX OF LINEAR REGULATOR FOR TIME SYEF 0.2400

1 0.
2 -0,
3 -0.

1 2 3
2315 0.24200-01 0.464690-03
6794D-01 0.1856 0.7636D-02

1475D0-01 -0.3928D-01 0.2138

Now, the damping ratio of the complex eigenvalue pair has increased to 0.388, which is still too
small to give acceptably damped responses. This fact is confirmed by the set-point responses, which
are displayed next.
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STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUT: SET POINT COMMAND YSPD ( 1
AMPLITUDE = 1.00
DEC 75 1982

2.0 F—-

RUN NO. 3

YSP

B O T S I

TIME

88

0.0 2.5 5.0 7.5 [0.0 12.5 15.0 17.5 20.0 22.5 25.0



YSP

STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUT: SET POINT COMMAND  YSPD ¢ 2
AMPLITUDE = 1.00
DEC 7, 1982
2.0 p—— RUN NO. 3

g.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME
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Actually, the 10-percent overshoot criterion is met, but y,; does not quite reach steady state in less
than 5 seconds. Thus the user begins a third design iteration, choosing the weighting on x; to be 10

this time.

FUNCTION 0

TO COMFUTE FURTHERs ENTER NEXT FUNCTION NOS,(I3)s ONE FER LINE
TO TERMINATE ENTER 9992(LAST ENTRY MUST BE A RETURN)

203

801

301

819

604

FUNCTION 203
DISFLAY CONFAR BEFORE MAKING CHANGES?

n
ENTER CONTROL WTS QC» NN AND/OR FPCINV (NAMELIST CONFAR)

SCONPAR

QC= 1.0, 2499%0.0

NN= 250%0.0

FCINV= 1,0y 5%0.0s 1.0, 18%0.0
LEND

ARE THERE ANYMORE CHANGESs Y OR N7
n

FUNCTION 801
DESIGN A LINEAR QUADIRATIC REGULATOR

EIGENVALUES OF REGULATOR OR FILTER IN FN/ZETA FORM

NAT FREQ (HZ) ZETA
0.95240-01 1.000
0.2063 0.3879

The preceding eigenvalues indicate that response time should now be acceptable as the slowest
eigenvalue (\; =0.1392 Hz =0.875 rad/sec) should give a settling time (~4/\;) of about 4.5 seconds.

88 =
i 2 3
1 1.285 0.6844 0.5240
2 0.6844 0.7483 0.3449%
3 00,5240 0.3449 0,7536
KC =
1 2 3
1 0,5240 0.3449 0.7536
2 0.6844 0.7483 0.3449

FUNCTION 301
FORM A-BKC MATRIX

FUNCTION 819
FORM FEED FORWARDI MATRIX FOR NON-ZERO SET FOINT CONTROL
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KFF =

1 2
1 0.,6585 0.7556
2 00,7592 -0.6551

FUNCTION 604
OBTAIN AND FLOT SELECTED STEF RESFPONSES
FOR THE NON-ZERO SET FODINT LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR REBULATOR FOR TIME STEF 0.,2400

1 2 3
1 0.92574 0.2138 0.16480-01
2 -0.1549 0.7967 0.1292
3 ~0.8876D-01 -0.2785 0.8125

FORCEDR RESFONSE MATRIX OF LINEAR REGULATOR FOR TIME S1EF 0.2400

1 2 3
1 0.2356 0,26730-01 0.,13660-02
2 -0.1901D-01 0.2164 0.,1662D-01
3 =-0.,1208D-01 -0,3521D-01 00,2177

The step responses confirm that both set-point output transients are acceptable.
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92

YSp

STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUTS SET POINT COMMAND YSPD ( 1 )

AMPLITUBE = 1.00
DEC 75 1982
2.0 — RUN NO. 3
1.8 p~—
1.6 p—
1.4 P
1.2 p—

N N B B I DO N N

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME



YSP

STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUTZ SET POINT COMMAND YSPD ( 2 )
AMPLITUDE = 1.00
DEC 7. 1982
BUN_NO. 3

1 1 1 1 & &+ [ |

0.0 2.5 5.0 7.5 10.0 12.% 15.0 17.5 20.0 22.5 25.0

TIME
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As a final check, the control responses are examined for this design to see that required control
excursions are within limits (£5.0). To do this, the user requests function 101, which allows changes
to be made in reference values. In particular, the user changes elements of transient response
selection matrices MSYSP and MSPU so as to request both the control responses and the output
responses, thus displaying the interaction between output 1 and input 2 and vice-versa.

FUNCTION 0

TO COMPUTE FURTHERs ENTER NEXT FUNCTION NOS,(I3), ONE FER LINE
TO TERMINATE ENTER 999(LAST ENTRY MUST BE A RETURN)

101

604

FUNCTION 101
CHANGES TO REFS

DISFLAY REFS BEFORE MAKING CHANGES?

n

ENTER CHANGES 10 NAMELIST REFS (TSFTR, DTs FI, DELF, ZERMAXs AMFSF» AMFSR»
AMFICXs IF, ISFACE, IOUT, IMEAS, JINCs, JINDy ITRMXs NCURVy LINLOG» MSFY:»
MSFYSF, MSFU, MSROLY», MSROLXs MICCLYs MICCLX, MICCLU, MICOLY, MICOLX)

The program then displays the reference values and plots the requested transients.

EREFS mspusr(1s1)=0s1rmsrusr(1s2)=150rmsrul(irid=1,1ymsru(l,2)=151 Rend
EREFS

TSFTR= 1,0

DT= 0.240

FI= 0,100-01

DELF= 0.10D-01

ZERMAX= 100.,0

AMPSF= 5%(.C

AMFSR= SX1.0

AMFICX= SOX%1.,0

IF= 96
ISFACE= 2
Iout= 1
IMEAS= 1
JINC= 1
JIND= 1
ITEMX= 100
NCURU= 2
LINL3G= 2
MSPY= 250%0
MSFYSF= C» 1y Z%0, 1,5 19%C

MSFU= 2¥1- 2ZxC+ 2x1. 18%C
MSROLY= 28CX0

MSROLX= 2%1, 3%0s 2%1, 238%0
MICCLY= 1, 2499%0

MICCLX= 2500%0

MICCLU= 230%0

MICOLY= 1y 249940

MICOLX= 1s S0X0, 1, 2448%0
SENI

ARE THERE ANYMORE CHANGES, Y CR NP
"'l

FUNCTION 604
OBTAIN AND PLOT SELECTED STEF RESFONSES
FOR THE NON-ZERO SET FOINT LINEAR REGULATOR

STATE TRANSITION MATRIX OF LINEAR RECULATOR FOR TIME STEF 0.2400

1 2 3
1 0.908¢9 0.1832 0.,75710-02
2 -0.5167 0.5573 0.,55550-01
3 -0.8230D-01 -~0,2934 0.785%
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FORCED RESPONSE MATRIX OF LINEAR REGULATOR

1 2 3
1 0.231%5 0.2420D0-01 0.6469D-03
2 -0.67940-01 0.1856 0.7636D-02

3 -0.1475p-01 -0.3928D0-01 0,2138

STEP RESPONS
INPUT: SET

FOR TIME STEF 0.2400

€S FOR NON-ZERO SET-POINT REG.
POINT COMMAND YSPD ( 1 )
AMPLITUDE = 1.00
DEC 70 1982
RUN NO. 3

0.5 —
0.4 p—
0.3 p—
0.2+—

~ 0.1

o

« 0.0 -

Q

w

T - H
-.2
_.3-—
_.4--_
A

I S N B B B B

6.0 2.5 5.0

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME
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STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUT: SET POINT COMMANG  YSPD ¢ 2 )
AMPLITUDE = 1.00
DEC 75 1982
0.0% RUN NO. 3

0.03 p—

YSP

-.02 H—

-.03

o5 _U

-.06

N N N [ I (N I

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME

Note that there is some interaction between input 1 and output 2 but little between input 2 and
output 1.

Finally, the four control responses are displayed. These responses confirm that design criterion 3
has been met. That is, both control signal absolute magnitudes remain less than 5 during a step
response. The maximum excursion for u; is +1.07 and that for uy is +2.98, both well below the
design limits.



STEP RESPONSES FDR NUON-ZERD SET-PDINT REG.
INPUTI SET POINT COMMAND YSPD ( 1 )
AMPLITUDE = 1.00
DEC 7» 1982

lel e RUN NO. 7

S Y T B

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME
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STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUT: SET PODINT COMMAND YSPD 4 1 )
AMPLITUDE = 1.00
DEC 79 1982
RUN NCO. 3

U I N I N N A B

2.5 5.0 7.5 10,0 12.5 15.0 17.5 20.0 22.5 25.0

TIME



STEP RESPONSES FDR NON-ZERO
INPUT: SET POINT COMMAND
AMPLITUDE =

SET-PODINT REG.
YSPD < 2 )
1.00

OfFC 7, 1982
RUN NO. 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME
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STEP RESPONSES FOR NON-ZERO SET-POINT REG.
INPUTZ SET POINT COMMANE YSPD ¢ 2 )
AMPLITUDE = 1.00
DEC 75 1982
RUN ND. 3

-1.0 p—

-tel p—

[N N I N N B B

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

TIME



After the responses are displayed, the user is again prompted for more requests, at which time the
user terminates the program. The terminal session ends with the user requesting a printout of the
output dataset (OUTxxx) that was generated during the present run for further off-line analysis if

desired.

FUNCTION 0

TO COMFUTE FURTHER, ENTER NEXT FUNCTION NOS.(I3), ONE FER LINE

TO TERMINATE ENTER 999(LAST ENTRY MUST EBE A RETURN)
299

STORE THE N1 FOR THIS RUNT?
n

CHCRWA400 TERMINATED! STOF RETURN

erint outasarertsr=edit

CZARDOSO FRINT RBSN=0498, 800 LINES

off

ROO7 LOGOFF AT 14140 ON 07/07/81 ~ CFPU TIME=

LOGICAL DISCONNECTs LOGON DR HANG UF

0,07 MINUTES,
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Appendix D
Terminal Output Options and Main PROCDEF

This appendix includes (1) a list of those items included in the ‘‘standard’’ terminal output, (2) a
list of those items included in the “‘extended’’ terminal output, and (3) the PROCDEF that is used to
set up the program before it is run.

Standard Terminal Qutput

The following data will be displayed in the user’s terminal if the user has requested the functions
that generate these data:

(1) NAMELIST N1
(2) NAMELIST REFS
(3) NAMELIST CONPAR
(4) NAMELIST ESTPAR
(5) NAMELIST MATDAT
(6) Open- and closed-loop eigenvalues
(7) Kalman filter eigenvalues
(8) Transfer function numerator and denominator polynomial coefficients
(9) Transfer function gains
(10) Maximum and average symmetry error for the SS and PP matrices
(11) Positive-definiteness checks for the SS and PP matrices
(12) Maximum element of and trace of the residual error matrix for the control and Kalman filter
Riccati equations
(13) Lyapunov error check data consisting of
(a) Trace of residual
(b) Normalized diagonal elements of error matrix
(¢) Trace of error
(d) Trace of covariance
(e) Ratio of trace of error to trace of covariance
(14) Normalizing factors
(15) Error messages

Extended Terminal Output

The extended terminal output consists of all of the standard terminal output plus

(1) Input matrices
(2) All eigenvectors and mode shapes
(3) The ATOT, CTOT, DTOT, KCTOT, and HTOT matrices
(4) The SS matrix
(5) The PP matrix
(6) The KC matrix
(7) The KE matrix
(8) The KFF matrix
(9) All covariance matrices
- (10) Controllability check matrix
(11) Observability check matrix (through H)
(12) Observability check matrix (through C)
(13) Transfer function gains and zeroes
(14) All state-transition matrices
(15) All forced-response matrices
(16) Symmetry error matrix for the control Riccati equation
(17) Residual error matrix for the control Riccati equation
(18) Symmetry error matrix for the Kalman filter Riccati equation



(19) Residual error matrix for the Kalman filter Riccati equation
(20) Normalized system matrices: A, B, C, H, QQ, RRINYV, D, DOUT, and CSP

PROCDEF AESRUN

The user invokes the following PROCDEF, AESRUN, before running the AESOP program. The
purpose of the PROCDETF is to datadef all necessary libraries and required datasets. The PROCDEF
requires one parameter (up to three characters), which is used to label all datasets that may be

generated during the subsequent run of the AESOP program.

AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN

AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN
AESRUN

AESRUN

Eleven VS datasets that are to contain program input or output are datadeffed by this PROCDEEF.
Table I lists these datasets plus four others that might be datadeffed by the user during the course of

0000000
0000100
0000200
0000300
0000400
0000500
0000600
0000700

0000800
0000900
0001000
0001100
0001200
0001300
0001400
0001500
0001600

0001700

PROCDEF AESRUN
PARAM $1

ERASE OUTS$!1

DDEF FT06F001,VS,0UT$1,DCB = (RECFM = V,LRECL = 132),RET =T
DISPLAY ‘OUTS$1 IS DDEFD TO THE HI-SPEED PRINTER’

DDEF FTO08F001, VS,CG$1; DISPLAY 'CG$1 IS DDEFD TO 10 UNIT 8’
DDEF FT09F001,VS,EGS$1; DISPLAY ‘EGS$1 IS DDEFD TO IO UNIT 9’
DDEF FT10F001,VS,PFRUZ$1; DISPLAY ‘PFRUZ$1 IS DDEFD TO IO
UNIT 10’

DDEF FT11F001,VS,PFRUYS$1; DISPLAY 'PFRUYS$1 IS DDEFD TO IO
UNIT 11"

DDEF FT12F001,VS,PFRWZ$1; DISPLAY 'PFRWZS$! IS DDEFD TO 10
UNIT 12’

DDEF FT13F001,VS,PFRWY$1; DISPLAY 'PFRWY$1 IS DDEFD TO IO
UNIT 13

DDEF FT14F001,VS,CFR$1; DISPLAY ‘CFR$1 IS DDEFD TO IO UNIT
14/

DDEF FT15F001,VS,PP$1; DISPLAY ’PP$1 IS DDEFD TO IO UNIT 15’
DDEF FTI16F001,VS,SS$1; DISPLAY ’SS$1 IS DDEFD TO 10 UNIT 16’
DDEF FT17F001,VS,FFG$1; DISPLAY ‘FFG$1 IS DDEFD TO IO UNIT
17/

DDEF RUN1,VP,GRAPHICS, OPTION = JOBLIB; DISPLAY ‘RUNI IS
LIBRARY GRAPHICS’

DDEF RUN2,VP,AESLIB,OPTION = JOBLIB: DISPLAY 'RUN2 IS
LIBRARY AESLIB’

LOAD BLOCKA9; LOAD AESOP

running the program.
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Appendix E

Flow Chart
This appendix contains a subroutine flow chart of the numbers are listed (in parentheses) below the name of the
AESOP program in ‘‘tree’’ form. Where specific func- subroutine.

tions are performed in a subroutine, the function

AESOP --
-PLOTSUBS
~--AES100-~
€101,102)
--PREREQ
--AES200-~
(203,204,)
€205,206,)
(207,208)
--PREREQ
--MATPRT
~-MATIN -~
€201)
--MATPRT
—-MATRD —-
202)
~-MATPRT
—--MATCHG
€209)
--AES300--
€301,302,)
(303)
--PREREQ
--MATPRT
--AES400--
--PREREQ
--MATPRT
--EIGEN --
(401)
--ARRAY
-~HSBG
--EIGQR
—-SCALEA
--CONDI -~
I-—SCALEA
[--REDU
-~EGVCTR--
(402)
~~MATPRY
—-ARRAY
--FACTR
--PRMUTE
~~MODSHP--
4062)
—~MATPRT
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--AES500--

(503,506,)

(509,512,)
(525)

--AES600--

~—AES700--

--CTBL -~
€403)

=~MATPRT
==-MXINV

--0BSBL --
(403)

==MATPRYT

--RESI --
(403)

-—MATPRT

==NRML
(404)

=~UNRML --
(405)

--MATPRT

--PREREQ
-~FRSPNS--
(501,5064,)
(507,510,)
(513,515,)
(517,519,)
(521,523)
--FRQP --|
--FRPOLY
--BOLLIN--|
--DAVISO

'-DANSKY—-I

--POLMPY

(518,520,)
(522,524)

I—PLOTSUBS

--PREREQ
-—MATPRT
--DSCRT

(601,602,)
(603,604)

--s7P -~
(601,604)
|-PLOTSUBS

--ICRSP --
(602,603

|-PLOTSUBS

--PREREQ
~-MATPRT
-~ZERQES--
(701,702,)
(703,704,)
(705>

—=ARRAY
-~HSBG

--EIGQR

--CONDI ~-
--SCALEA
~-REDU
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--AES800--
(802,806,)
(808,8190,)
(8164,816)

-=GAIN
(701,702,)
(703,704,)

(705)
--PREREQ
~-MATPRT
--CONTRL--
(801)
--MATPRT
--RICSS --
--EIGEN --
(803,805,)
(811,812,)
(813)
--ARRAY
--HSBG
--EIGQR
-~SCALEA
--CONDI --
--EGVCTR-~
(804)
~-MATPRT
--ARRAY
--FACTR
--PRMUTE
~-MODSHP -~
(804)
--MATPRT
--RICCHK--
(207,815)
-~MATPRT
--ESTMAT--
809)
--MATPRT
--RICSS --

--MATPRT
--ARRAY
--MXINV
--O0RDER
--EIGQR
--SCALEA
--~HSBG
--EGCK --]
-~MODSHP--
--MATPRT

--EGVCTR--
--MATPRT
--ARRAY
~~FACTR

--PRMUTE

I——SCALEA
|--REDU

| --MATPRT
-~ARRAY
~-MXIKV



-—-AES900--
(901,902,
(903,904)

--ORDER
-~EIGQR
-~SCALEA
--HSBG
--EGCK  ——|
--MODSHP--
|--MATPRT
-~EGVCTR-~
--MATPRT
--ARRAY
--FACTR
--PRMUTE
-—COVAR —-
817)
--MATPRT
--ARRAY
--LAPNV -~
l--MXADD
’-—MXMLT
I——MXTRA
’--HXINV
--DSCA
--LYPCK --
(818)
--MATPRT
--ARRAY
~-LAPNV --
-~MXADD
—-MXMLT
~-MXTRA
--MXINV
--DSCA
-~MXINV
219)
--UZR901
--UzZR902
--UZR903
-=-UZR904
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Appendix F

Prerequisite Table

This appendix contains the information used by the
AESOP program to make prerequisite checks. These
checks are performed before each AESOP function is to
be executed to see that the necessary function or com-
bination of functions has been performed prior to
execution of the present function. Table XII lists this
prerequisite check information in the following form:
The specific prerequisite function or combinations of

108

functions are listed across the top, and each function
whose prerequisites are to be checked is listed on the left.
A checkmark appears in a row to indicate a prerequisite.
Multiple checkmarks in a row indicate that the corre-
sponding prerequisites are to be logically ‘‘ANDed.”’ For
example, the logical prerequisite statement for function
303 is (201 OR 202) AND (205 OR 801) AND (206 OR
809).
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TABLE XII. - PREREQUISITES FOR AESOP FUNCTIONS

Function

Prerequisite function

None

201
or
202

205
or
801

206
or
809

207
or
801

208
or
809

301

302

303

205,
206,
801,
or
809

401

402 | 404 | 501 | 504 | 507

510

513

515

517

519

521

523

801

803

809

817

819
or
209

101
102

201
202
203
204
205
206
207
208
209
210

301
302
303

401
402
403
404
405

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

> >< >¢ >

> >¢ > > > 3¢ D€ DC D¢ D¢ DC < >

><

< > >¢

> >

>< <

>< >

> >
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TABLE XII. - Concluded,

) Function

Prerequisite function

None 201 205 206 207 208 301 302 303 205, 401 402 404 501 504 507

or or or or or
202 801 809 801 809

206,
801,
or
809

510 513‘ 515 517 519 521 523 801

803 809 817 819

or
209

522
523
524
525

601
602
603
604

701
702
703
704
706

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
901
902
903
904

> > D¢ <

> > >
>

¢ <D< X<

>< >

> ><
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